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1 Executive Summary 

The CERISE project is aimed at creating innovative improvements in the Copernicus Climate 
Change Service (C3S). Within this framework, the focus is on the representation of the land 
surface in the reanalysis products and seasonal forecasts that form part of the service. This is 
being done through far greater exploitation of observational land surface data in atmosphere-
ocean-land-cryosphere analysis than has previously been achieved. Innovative methods to 
assimilate these datasets have been developed in work packages (WP) 1 and 2 of CERISE 
and prototype reanalysis products produced (WP3, 4). In addition, the impact of these 
developments on the C3S seasonal prediction service, which uses reanalyses to initialise the 
seasonal prediction ensembles, is being assessed through the production of new sets of 
demonstrational seasonal hindcast simulations (WP5). WP5 will include an assessment of 
improvements in performance using standard metrics, but there is a need for a more complete, 
more in-depth, process-based evaluation of the new prototypes and demonstrators. This is 
the work of WP6, and this report forms part of its delivery. 

Standard verification methods may not be sensitive enough to detect the often subtle changes 
and improvements associated with representation of land characteristics. Beyond the 
standard approaches applied in WP5, existing infrastructure available for making detailed 
assessments of the land surface in CERISE outputs is limited. In WP6, therefore, it has been 
necessary to develop a novel suite of tools and methodologies to fulfil this function. This is 
task 6.1 of WP6, and this deliverable (D6.1) reports on the outcomes of that activity. The 
deliverable presents a variety of methods that have been developed to evaluate the fidelity of 
land variables and land-atmosphere interactions in the reanalysis prototypes and seasonal 
prediction demonstrators. Note that this report is concerned with the development of the 
techniques that are to be deployed. The evaluation of CERISE developments that will be 
produced using these techniques will be reported later in the project. 

The work produced for this deliverable has resulted in a wide range of tools and methods for 

in-depth assessment of prototype and demonstrator characteristics. These tools are described 

in detail in the report. The scope has been across a wide range of variables – as well as 

fundamental land-surface properties like snow cover variables, soil moisture and surface 

temperature, related variables such as evapotranspiration and latent heat flux, as well as 

atmospheric temperature, cloudiness and circulation, have been considered. For many of 

these variables, the development and cataloguing of observational datasets in WP7 has been 

essential to producing an effective toolkit for evaluation.      

There is a similar breadth in methodological approaches. Methods to assess skill and reliability 

of snow cover forecasts are complemented by tools to examine snow cover distributions and 

snow-atmosphere coupling considering the direction of causality. Off-line hydrological 

simulation using CERISE inputs has also been developed to provide a novel way of assessing 

the performance of integrated land-surface properties in simulations. Assessment methods for 

soil moisture have highlighted the role of observational uncertainty. Novel ways of analysing 

the performance of newly-produced systems in terms of soil moisture-atmosphere coupling, 

at scales from local and global, have also been produced. Some of these techniques have 

harnessed machine learning to try to separate the roles of the land surface and the 

atmosphere in generating local climate extremes. A range of further methodologies and tools 

have also been developed and are detailed in the report. For example, there are tools to 

examine what seasonal-scale error growth tells us about seasonal prediction performance and 

assessments of consistency and trends in reanalyses and seasonal hindcasts.        

The collection of methods developed here create an experimental toolkit for the assessment 

of the innovations in reanalyses and seasonal predictions that are being created in CERISE. 

As mentioned above, these tools will be deployed for this function later in the project. Since 
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the project has had to conceive and develop these tools as research and development activity, 

there is no guarantee that they will be universally successful in providing clear evidence of 

improvement (or otherwise) in CERISE outputs. Nevertheless, by developing a broad range 

of techniques looking at different products and variables, gives the best chance of being able 

to clearly determine the benefits of the main innovations in the CERISE project.      
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2 Introduction 

Interactions between the land and the atmosphere are important modulators of climate 
variations, and therefore sources of predictability. A key goal of the CERISE project is to 
develop new methods for the assimilation of land surface observations to enhance the 
representation of time-varying land surface properties in climate reanalysis 
(https://www.cerise-project.eu/). CERISE aims to create prototype reanalysis products and 
test the value of these products by using them to initialise seasonal predictions as a 
demonstration of potential benefit to the C3S service.  Key to the implementation of CERISE 
is the evaluation of potential improvements in these newly-developed reanalysis prototypes 
and seasonal demonstrators. This is the function of work package (WP) 6 (‘Evaluation and 
exploitation of demonstrator results for future C3S implementations’).  The initial phase of 
activity in WP6 (Task 6.1 – ‘Develop techniques and methodologies for evaluating the 
increased fidelity of land surface processes in the prototypes and demonstrators’) concerns 
the creation of the necessary tools to attempt to evaluate improvements in quality. These tools 
will be applied to the new reanalysis prototypes and seasonal prediction demonstrators 
produced by CERISE in Task 6.3, work which is scheduled to occur later in the project. This 
deliverable (D6.1) documents the collection of evaluation methodologies and tools to assess 
potential future improvements. This is in addition to the more traditional methods of seasonal 
forecast evaluation (e.g. probabilistic skill scores) which will be performed in WP5. Because 
these can lack sensitivity in robustly detecting changes in the fidelity of predictions, it is 
necessary to develop a range of other techniques to understand the impact of system changes 
brought about by improved land surface representation. The set of tools and methodologies 
described here establish a framework and a protocol for assessing the new reanalysis and 
seasonal forecasts in CERISE. 

 

2.1 Background 

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast 
portfolio, with a focus on land-atmosphere coupling. 

It will support the evolution of C3S, over the project’s 4-year timescale and beyond, by 
improving the C3S climate reanalysis and the seasonal prediction systems and products 
towards enhanced integrity and coherence of the C3S Earth system Essential Climate 
Variables.   

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data 
assimilation approaches and land surface initialisation techniques to pave the way for the next 
generations of the C3S reanalysis and seasonal prediction systems.  

These developments will be combined with innovative work on observation operator 
developments integrating Artificial Intelligence (AI) to ensure optimal data fusion fully 
integrated in coupled assimilation systems. They will drastically enhance the exploitation of 
past, current, and future Earth system observations over land surfaces, including from the 
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions, 
moving towards an all-sky and all-surface approach. For example, land observations can 
simultaneously improve the representation and prediction of land and atmosphere and provide 
additional benefits through the coupling feedback mechanisms. Using an ensemble-based 
approach will improve uncertainty estimates over land and lowest atmospheric levels.  

By improving coupled land-atmosphere assimilation methods, land surface evolution, and 
satellite data exploitation, research and innovation (R&I) inputs from CERISE will improve the 
representation of long-term trends and regional extremes in the C3S reanalysis and seasonal 
prediction systems.   

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the 
integration of the developed approaches in the core C3S (operational Service), with the 
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delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and 
seasonal prediction demonstrator datasets (demonstrated in relevant environment).  

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the 
components of the seasonal prediction multi-system, directly addressing the evolving user 
needs for improved and more consistent C3S Earth system products. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

This deliverable presents a variety of techniques and methodologies for evaluating the 
increased fidelity of land surface processes in the newly developed reanalysis and seasonal 
prediction prototypes and demonstrators developed within CERISE. The objective is to 
develop an innovative set of tools and diagnostics that allow the evaluation of different 
characteristics and processes in relation to land state and land-atmosphere interactions. 
These tools are being developed and tested on current reanalyses and C3S seasonal 
prediction systems (so-called ‘phase zero’ demonstrators), in preparation for being applied to 
the new demonstrators and prototypes developed within CERISE. 

 

2.2.2 Work performed in this deliverable 

This deliverable is the output of WP6 Task 6.1, which focuses on developing new techniques 
and methodologies to evaluate the improved accuracy of land surface processes within new 
reanalysis prototypes and seasonal prediction demonstrators. The central goal is to establish 
a robust framework for assessing these improvements and identifying suitable datasets for 
verification. This task develops a variety of methods for evaluation, moving beyond standard 
verification methods (as applied in WP5) that may not be sensitive enough to detect the 
sometimes subtle effects of the land-atmosphere interactions. These methods include the 
evaluation of land states and land-atmosphere interactions associated with soil moisture and 
snow cover, the verification of river discharge, understanding error growth associated with 
land-atmosphere coupling in the initialised predictions, evaluating the consistency of hindcasts 
and forecasts, and trends in the hindcasts. The task also focuses on determining suitable 
datasets for the evaluation of the land-related characteristics, and on identifying so-called 
‘windows of opportunity’ when the land state provides enhanced predictability. 

 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

2.2.4 Reference Documents 

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement 

 

2.3 CERISE Project Partners: 

 

ECMWF European Centre for Medium-Range Weather Forecasts 

Met Norway Norwegian Meteorological Institute 

SMHI Swedish Meteorological and Hydrological Institute 

MF Météo-France 



 

CERISE  
 

  7 

DWD Deutscher Wetterdienst  

CMCC Euro-Mediterranean Center on Climate Change 

BSC Barcelona Supercomputing Centre 

DMI Danish Meteorological Institute 

Estellus Estellus 

IPMA Portuguese Institute for Sea and Atmosphere 

NILU Norwegian Institute for Air Research 

MetO Met Office 
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3 Tools for testing improvements in the reanalysis prototypes and 
seasonal prediction demonstrators 

3.1 Assessing the fidelity and reliability of snow re-forecasts and reanalyses 

3.1.1 Relevant variables and evaluation of snow re-forecasts 

 

Snow variables. Most of the satellite snow observations provided by WP7 are available as 
snow cover fraction (SCF), while the majority of forecast systems provide Snow Water 
Equivalent (SWE) or snow depth (SD) as the prognostic variables. SCF is calculated following 
a conversion rule that is model dependent. For example, in the ECMWF Phase 0 
demonstrator, a linear conversion rule is used, with a SD threshold of 0.1 m implying 100% 
snow cover, while in Phase 1 a more complex conversion rule will be employed based on Niu 
and Yang (2007). The latter is already in use in the CMCC Phase 0. Once converted, the SCF 
in planned demonstrators will be compared directly to the satellite SCF observations in the 
WP7 repository, namely the IMS (2004 - 2022), and the two ESA-CCI products AVHRR (2000 
- 2018) and CryoClim (1982 - 2019), or to re-analyses. Comparison to these reference 
datasets will be the basis for assessing improvement in SCF.  

Forecast fidelity and skill assessment. In a first instance, the bias and root-mean square 
error can be calculated to assess the fidelity. The impact of land data assimilation (DA) 
(through initial conditions) on the forecast skill in different project phases (or in various 
experiments in the same phase) can be assessed via the r-square metric (e.g., Li et al., 2019). 
In this case, r is the anomaly correlation coefficient between the ensemble‐mean re-forecasts 

and observations (reanalyses). The difference in r2 (with the sign of r) between different 

phases of the demonstrators (or between different experiments in the same phase) will 

indicate regions where differences in land DA are resulting in either improved or reduced 

forecast skill. Such diagnostics will be applied in short (10-days) to long (seasonal mean) time 

windows based on the purpose of the analysis. In addition, the Spatial Probability Score (SPS; 

Goessling and Jung, 2018) has been added to ECMWF's Coupled Ensemble Predictions 

Diagnostics (CEPDIAG) package and will be used to evaluate snow cover in CERISE 

seasonal forecast demonstrators. It is a spatial analogue of the Continuous Ranked Probability 

Score (CRPS) and is defined as SPS = ∫ {Pf(x)−Po(x)}2 dV, where Pf is the probability of snow 

cover and Po is 1 or 0 depending on whether snow is present or not. As far as we know, this 
is the first time that the SPS has been applied to snow-cover, having previously been used to 
evaluate sea ice cover.  

Reliability diagrams for snow forecasts. For a probabilistic forecasting system, it is 
important to assess whether its predictions are reliable, i.e. that the forecasted probability of 
a binary event matches its actual frequency of occurrence. Reliability diagrams visualize such 
information for the entire range of forecast probabilities. A forecasting system is perfectly 
reliable when the data points in a reliability diagram lie on a diagonal. We can assign reliability 
categories based on the slope of the best-fit reliability line and the uncertainty associated with 
it following Weisheimer and Palmer (2014): 5 – perfect (green), 4 – useful (blue), 3 – marginally 
useful (yellow), 2 – not useful (orange), 1 – dangerously useless (red).  A tool for reliability 
assessment of snow forecasts has been developed and evaluated on phase zero seasonal 
hindcasts for different regions in the Northern Hemisphere (Figure 1). It can also be applied to 
shorter time windows. The uncertainty range is defined as the 90% confidence interval of best-
fit slopes obtained via 1000 bootstrap tests with replacement applied to the order of years in 
re-forecasts and observations. By comparing such reliability maps for each CERISE model 
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and demonstrator phases, regions with improved/reduced reliability can be identified. The 
reliability assessment can be carried out against snow variables in reanalyses as well as 
against snow observations from the satellites provided by WP7. 

 

Figure 1: Map (top) of reliability categories for the ECMWF phase 0 re-forecasts against ERA5, for SWE in DJF 
1993-2022. Here, the binary event E corresponds to a snow anomaly above the median. Also shown (bottom) are 
two reliability diagrams for two specific regions (Alaska and Northern Europe). Color codes for different categories 
are explained in the text. 

 

3.1.2 Snow processes and snow-atmosphere coupling  

Snow phenology. To compare snow phenology in demonstrators and re-analyses, methods 
to derive a series of indicators have been developed. Such indicators include the duration of 
snow melt or accumulation, or the day of snow onset or snow ending. 

Snow-atmosphere/coupling. A classical approach to analyze the land-atmosphere coupling 
is to look at the r-square metric as a function of lead time, where r is the anomaly correlation 
coefficient between the near-surface air temperature and snow depth or SWE (Figure 2). 
Regions with the strong negative correlation are also called the “cold spots” of snow-
atmosphere coupling and are found near the snow transition line (Xu and Dirmeyer, 2011; Li 
et al., 2019). Methods to identify regions of snow-atmosphere coupling have been developed 
and will be applied to the models in the new demonstrator phases to identify where it is realistic 
and where it is under-represented or exaggerated. 
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Figure 2: The correlation-square (r2) with the sign of r between the SWE (m WE) and temperature at 
2m (K) as a function of lead time. Shown for the ECMWF phase 0 re-forecasts in 1993 – 2022 

initialized on 1 November in six 10-day windows (lead 0: 2–11 November, lead 1: 12–21 November 
etc). 

 

Coupling strength. Similar to what is done for soil moisture, a coupling strength has been 
inferred from the characteristics of the forecast ensemble. In its original form, this so-called Ω  

𝛺 =
𝑁�̅�2 − 𝜎2

(𝑁 − 1)𝜎2
 

diagnostics necessitates comparing twin experiments (Koster et al., 2006; Xu and Dirmeyer, 
2011) but is close to potential predictability. Ω is associated with the mean value of the 
anomaly cross correlation coefficient and the average variance.  For the snow forecast 
assessment, we will analyze forecasts during snow-accumulation and melting periods. By 
comparing Ω diagnostics in different demonstrator phases, regions with improved or reduced 
consistency between the ensemble members can be identified or compared between models. 

Causality inference. While correlation analysis can find a statistical linear association 
between variables, it cannot infer the direction of causation. The Liang–Kleeman information 
flow approach can evaluate the cause in dynamical systems and is calculated as  

𝑇2→1 =
𝐶11𝐶12𝐶2,𝑑1 − 𝐶12

2 𝐶1,𝑑1

𝐶11
2 𝐶22 − 𝐶11𝐶12

2 , 

where Cij is the covariance between variables Xi and Xj, and Ci,dj is the covariance between Xi 
and the time derivative of Xj using the Euler forward scheme. 
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This diagnostic tool has been applied before to the snow-temperature coupling problem in 
S2S prediction (Komatsu et al. 2023, Takaya et al. 2024), but not yet in seasonal forecasting.  
An example is shown on Figure 3 to infer how surface temperature and snow depth influence 
each other. Moreover, the methodology to infer causal linkage will be applied between the 
snow and soil moisture i.e., to look at hydrological effects in spring, or between snow spatial 
gradients and planetary waves, i.e., to link their forcing to land-sea temperature contrasts. 

 

Figure 3: Comparison between the correlation and information flow shown on example of the SWE 
(m WE) and temperature at 2m (K) variables in the ECMWF phase 0 demonstrator. a) correlation 

coefficient, b) information flow from the snow depth to the temperature, c) information flow from the 
temperature to the snow depth. The comparison is shown for the re-forecasts initialized on 1 

November initial date assessed over the first month (0-lead) in 2000 – 2019. 

Using these diagnostics, we can infer causality relationships in different models and 
demonstrator phases and identify the impact of new, improved data assimilation approaches. 

 

3.1.3 Verification of snow cover from reanalyses 

Spatial verification techniques aim to quantify differences in field spatial structure for weather 
variables over spatial domains, to provide information on error that also account for time-space 
uncertainties. Measuring errors in snow coverage is particularly challenging, since winter 
precipitation measurements can show large differences between different observing networks 
where the exact values depend upon regional snowfall characteristics. In this case, we 
compare high resolution model output with satellite estimates which are also highly uncertain. 
For this reason, we use neighbourhood-based or fuzzy verification techniques that aim to relax 
requirements for exact positioning and account for time-space uncertainty. It is widely used 
for evaluation of forecast skill under different thresholds in spatial windows of increasing size. 
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The fractional skill score (FSS, Roberts and Lean, 2008) is a neighbourhood verification metric 
based on the probability of the occurrence of an event in different spatial windows. In this 
case, we use the binary variable bin_snow, and there is only one threshold available. In Figure 
4 we show a case study for the period Nov 2015 to May 2016. 
 

 

 

Figure 4: Heatmap of Fraction Skill Score (FSS) of binary snow for the CERISE demonstrator (based 
on the CARRA-Land-Pv1 data set) against IMS data. The top row corresponds to the first 15 days of 

November 2015 and the bottom row to the first 15 days of May 2016. All domains were mapped to the 
CARRA1 East grid before calculating FSS, unit of neighbourhood size is the grid size, using the 

resolution of CARRA1 (2.5 km). 
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The methodology has been tested on data from the CARRA-Land-Pv1 system. The input is in 
the form of analysis/observation data in Zarr format that is converted to netcdf format and then 
processed by the grid_stat tool of the MET package. Other reanalyses, like CARRA1 and 
ERA5, have also been compared against IMS data. By comparing FSS scores for different 
models and demonstrator phases the reliability of the spatial distribution of snow on different 
times of the year can be identified. 

 

3.2 Hydrological evaluation 

3.2.1 Hydrological study unit 

In hydrology, the study unit where the hydrological processes yield streamflow is the drainage 
basin, also known as the catchment or watershed. The National Oceanic and Atmospheric 
Administration (NOAA) defines a drainage basin as “a land area that channels rainfall and 
snowmelt to creeks, streams, and rivers, and eventually to outflow points such as reservoirs, 
bays, and the ocean”. Taking the drainage basin as the hydrological unit, we developed a 
hydro-evaluation system at the basin level. This system allows any hydrological variable, such 
as soil moisture, rainfall, snow fraction, and runoff, to be aggregated and evaluated against 
observations or other models' outputs. 

 

3.2.2 Hydro-evaluation system 

A hydrological analysis system has been produced that allows the assessment of the impact 
from new reanalysis prototypes on seasonal forecasting. The hydrological analysis can be 
driven by meteorological outputs from any CERISE partner model (Figure 5). Streamflow is a 
widely observed quantity and is potentially a sensitive indicator of land surface conditions in 
response to basin rainfall and/or snowmelt.  We have applied the system to evaluate 
streamflow derived from phase zero demonstrators so far (e.g. Narváez-Campo and 
Ardilouze, 2024). Predicted streamflow is assessed against the observation datasets 
presented in Table 1. Meanwhile, other hydrological variables can also be evaluated using the 
same system. 

 

 

Figure 5: Hydro-evaluation system flow-chart schematic. 
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Dataset Region Reference 

GRDC: Global Runoff Data Centre Global http://www.bafg.de/GRDC/EN/Hom
e/homepage_node.html 

USGS: United States Geological Survey United States http://waterdata.usgs.gov/nwis/sw 

HYDAT: National Water Data Archive Canada https://collaboration.cmc.ec.gc.ca/c
mc/hydrometrics/www/ 

French Hydro database France http://www.eaufrance.fr 

Spanish Hydro database Spain http://ceh-
flumen64.cedex.es/anuarioaforos/d
efault.asp 

HidroWeb Brazil http://www.snirh.gov.br/hidroweb/ 

R-ArcticNet Northern High 
Latitudes 

http://www.r-
arcticnet.sr.unh.edu/v4.0/AllData/in
dex.html 

Australian Bureau of Meteorology Australia http://www.bom.gov.au/metadata/1
9115/ANZCW0503900339 

China Hydrology Data Project China Henck et al., 2011 

HyBAm Amazon basin https://hybam.obs-mip.fr/ 

 

Table 1: Streamflow observed datasets. 

 

The hydro-evaluation system can be divided into the following main components:  

 

Data Reading. Daily streamflow ensemble hindcasts are read from multiple files and stored 

in one multidimensional array Ntime × Nmembers × Ncomputational−cells. 

Data filtering. The full observed database is filtered to select flow-gauge stations with less 
than 25% of missing data (per season, month, or full data series) and a basin area lower than 
6000 km2. The observations are stored in an array of size Ntime × Nstations. 

Localisation of flow-gauge stations. To compare observed and simulated discharges, one 
must first localise the gauge station within the river network of the model. This procedure is 
done through the methodology proposed in Munier and Decharme (2022), obtaining a new 
streamflow forecasted array of size Ntime × Nstations × Nmembers consistent with the observed array. 

Time integration. Depending on the needs, the evaluation can be done in the native time 
resolution (daily or hourly) or performed monthly or quarterly. At this step, the ensemble mean 
is also computed to generate a new array of size Ntime-aggreg × Nstations employed for deterministic 
metrics computation.  

Scores against observations. Metrics computation is done using the evalhyd tool, whose 
documentation is available at https://hydrogr.github.io/evalhyd/python/. The tool allows 
computing 12 deterministic and 23 probabilistic scores.  

http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://waterdata.usgs.gov/nwis/sw
https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
http://www.eaufrance.fr/
http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
http://www.snirh.gov.br/hidroweb/
http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html
http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html
http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html
http://www.bom.gov.au/metadata/19115/ANZCW0503900339
http://www.bom.gov.au/metadata/19115/ANZCW0503900339
https://hybam.obs-mip.fr/
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Skill metrics between prototypes. The system evaluates where the new prototype was 
better or worse than the reference prototype. We apply the generic local skill metrics in Table 
2 for a basin-by-basin comparison. Note that these generic skill metrics can be based on any 
scores computed in the previous bullet. 

  

 

Table 2: Generic local skill scores used to compare seasonal streamflow forecast from prototype 0 
against prototype 1 basin by basin (table adapted from Narváez-Campo and Ardilouze, 2024). 

 

Besides the scores in Table 2, we propose a new global skill metric to evaluate the additional 
skill of the new demonstrator (relative to the reference) for a certain region instead of basin by 
basin. For a given region or set of basins, the new metric (Global Weighted Skill) compares 
the cumulative distribution function (CDF) of a certain score between the reference and new 
prototypes. When the 𝐶𝐷𝐹𝑛𝑒𝑤 is more concentrated at high performance score values than the 
𝐶𝐷𝐹𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, it means that more basins with flow-gauge stations show higher scores. Then, 

the Global Weighted Skill GWS allows to objectively compare the 𝐶𝐷𝐹𝑛𝑒𝑤 and 𝐶𝐷𝐹𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 to 

have an accurate view of the aditional skill of the new prototype for a certain region or set of 
hydrologicaly similar basins. For any positively or negatively oriented score 𝑆 (e.g, ACC, KGE, 
NSE, etc.), for which 𝑆𝑙𝑜𝑤 is considered a low performance value, the GWS reads: 

 

𝐺𝑊𝑆 =
𝑛 + 1

𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙  −  𝑆𝑙𝑜𝑤
∫ ⬚

𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑆𝑙𝑜𝑤

(𝐶𝐷𝐹𝑛𝑒𝑤  − 𝐶𝐷𝐹𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) × (𝑆 − 𝑆𝑙𝑜𝑤)𝑛 𝑑𝑆 

where 

𝐺𝑊𝑆 = 100%: perfect skill 

𝐺𝑊𝑆 ≈ 0%: No skill 

𝐺𝑊𝑆 < 0%: less accurate than reference prototype (or climatology/persistence) 

The parameter 𝑛, can be arbitrary set to 0, 1, 2 or 3 to give different weights to different scores 
magnitudes. The greater this parameter, the higher the weight given to the scores near the 
optimal one. In other words, the higher 𝑛, the more exigent we are with the performance of 
the new prototype in relation to the reference prototype. 

 

3.3 Evaluation of soil moisture variability and effects on the atmosphere 

3.3.1 Relevant variables and limitations 

To facilitate the evaluation of soil moisture and land-atmosphere feedbacks, a number of 
datasets have been considered as described in this section. In particular, the relation between 
soil moisture, precipitation and turbulent energy fluxes at the surface is assessed using the 
following datasets that have also been added to existing ECMWF’s Coupled Ensemble 
Predictions Diagnostics (CEPDIAG) evaluation toolkits: 
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● Surface and root-zone soil moisture (daily and monthly mean) from GLEAM (v3.7; 
Miralles et al., 2011) and ERA5-land (Muñoz-Sabater, 2021). 

● Berkeley Earth Surface Temperatures (BEST; Rohde et al. 2013), which provides 
spatially complete monthly station-based air-temperature estimates over land.  

● Version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al. 2018). 

 

These and other datasets used for the evaluation of CERISE reanalysis prototypes and 
seasonal forecast demonstrators are summarised in Table 3. 

Satellite Land Surface Temperature (LST) and in particular its daily amplitude is closely related 
to the partitioning of available energy at the surface. We use high frequency (hourly) LST data 
estimated from Meteosat Second Generation (MSG) observations by the Land Surface 
Analysis Satellite Application Facility (LSA SAF) LST (Trigo et al., 2021). LSA SAF LST is 
available under clear sky conditions only. While it may be affected by cloud contamination, or 
by uncertainties in atmospheric or emissivity correction (see Trigo et al., 2021), data 
aggregation in space and time greatly smooths those errors: LST (originally on a geostationary 
projection; 3 km at the sub-satellite point) is regridded to 0.25º; the hourly LST estimates are 
used to compute the monthly mean diurnal cycle.   

It is important to note that for several variables relevant for the evaluation of soil moisture and 
its effects on the atmosphere, the availability of in situ observations is severely limited. This 
affects soil moisture data itself, but also observations of heat fluxes and evapotranspiration. 
Some of the widely used observation-based datasets of these variables are therefore based 
on relatively simple land models driven by atmospheric boundary conditions provided by 
atmospheric reanalyses (being a numerical model output itself). We therefore performed a 
comprehensive analysis of the robustness of the relevant variables across a variety of 
observations-based datasets, and how potential data uncertainties affect not only our 
knowledge of the spatio-temporal variations of soil moisture (see below), but also of the 
coupling relationships between land and atmosphere (see following sub-section 3.3.2). 

Table 3 lists the observational datasets used in this analysis. Detailed inspection of the data 
indicates that the JRA55 surface soil moisture data shows abnormally low values on the first 
day of each month, indicating a potential artefact in the dataset (not shown). Similarly, both 
versions of the GLEAM dataset (3.7b and 3.8a) exhibit anomalously low values for 
evapotranspiration and potential evapotranspiration on June 6 and 7 each year (not shown 
here). Regional discrepancies are also evident, with poor correlations among the 
observational datasets found in the case of evapotranspiration from FLUXCOM in Northern 
Europe (NEU), SiTHv2 in Western Central Europe (WCE), and in the case of potential 
evapotranspiration from GLEAM 3.7b in the Mediterranean (MED, e.g. Figure 6). 

 

 

Data Data type Resolution Variables 

GPCP Satellite & In 
Situ 

2.5º Monthly gridded precipitation 

CLARA Satellite 0.25º Cloud fraction (CM SAF data record) 

BEST Gridded In-situ 1° 2m air-temperature over land 

LSA SAF LST Satellite 0.05º Land Surface Temperature (clear sky) 

ESA-CCI Satellite 0.25 ° Surface soil moisture 
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Data Data type Resolution Variables 

FLUXCOM Gridded in situ 0.5 ° Latent heat flux, 

Evapotranspiration 

E-OBS Gridded in situ 0.25 ° Surface air temperature, Maximum air 
temperature, Minimum air temperature, 
Potential evapotranspiration 

GLEAM Model  0.25 ° Soil moisture, Evapotranspiration, Potential 
evapotranspiration 

SiTHv2 Model  0.1° Soil moisture, Evapotranspiration 

ERA5/ ERA5-land Reanalysis 0.25° /0.1° Soil moisture, Latent heat flux, Net surface 
longwave radiation, Net surface shortwave 
radiation, Evapotranspiration, Surface air 
temperature, Maximum air temperature, 
Minimum air temperature, Potential 
evapotranspiration 

MERRA2 Reanalysis 0.5 ° Soil moisture, Evapotranspiration, Surface air 
temperature, Maximum air temperature, 
Minimum air temperature, Potential 
evapotranspiration 

JRA55 Reanalysis 0.5 ° Soil moisture, Evapotranspiration, Surface air 
temperature, Maximum air temperature, 
Minimum air temperature, Potential 
evapotranspiration 

 

Table 3: Observational datasets used in the prototype evaluation. Variable names in bold indicate 
that they are not provided as such by the dataset but derived from other provided variables. For 

analysis involving several datasets (e.g. calculating regressions or correlations between variables) 
these are remapped on a common grid, and similar for model evaluations these should be remapped 

on a common grid, or averaged over similar larger regions. 

 

While exploring the uncertainties across different observational-based datasets, it is found that 
the summer (JJA) soil moisture data are in good agreement with each other across different 
datasets (values of correlation coefficient among all the datasets are higher than 0.7 for all the 
European regions) even though there are substantial differences in the magnitudes across the 
datasets (see Figure 6 a, b). While analysing the surface soil moisture and root-zone soil 
moisture data, we found that the pattern of relation of these soil moisture data with other 
variables (i.e., evapotranspiration, surface temperature, and potential evapotranspiration) 
were similar, while the relationships with atmospheric variables are much stronger in case of 
surface soil moisture than root-zone soil moisture. Therefore, we are not showing the results 
from root-zone soil moisture here. However, the differences among datasets of either actual 
or potential evapotranspiration across Western and Central Europe are quite considerable 
(Figure 6). 

This analysis illustrates that there are non-negligible differences in the actual values of the 
different variables. When considering the time series for specific regions, surface soil moisture 
shows mostly significant correlations between the different datasets (Figure 6b). In contrast, 
evapotranspiration shows low or even negative correlations between some datasets, pointing 
to important inconsistencies in their temporal evolution. For example, the evapotranspiration 
SiTHv2 is weakly correlated with all the datasets except GLEAM 3.8a and JRA55. In addition, 
JRA55 indicates negative correlations with ERA5, FLUXCOM, and MERRA2 and no 
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correlation with ERA5-Land and weak correlation with GLEAM (3.7b, 3.8a) data. Similarly, 
potential evapotranspiration from JRA55 shows weak correlation with all other datasets, 
except GLEAM (3.7b, 3.8a) data. All these inconsistencies in the correlation matrices are seen 
in the spatial maps of land-atmospheric coupling as well (Figure 7). 

 

 

Figure 6: Summer (JJA) time series (on the left) for (a) surface soil moisture, (c) evapotranspiration, 
and (e) potential evapotranspiration and corresponding correlation matrices (on the right; (b), (d), (f)) 
for WCE. The E-OBS, FLUXCOM, and ESA-CCI datasets were regridded to the common FLUXCOM 
grid at 0.5° resolution, while the SiTHv2, ERA5, and ERA5-Land datasets were regridded to the ERA5 

grid at 0.25° resolution.  
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Figure 7: Correlation between surface soil moisture (SSM) and near-surface air temperature (TAS) 
(left), EVT and TAS (centre), and (right) SSM and EVT during boreal summer (JJA). The black dots 

represent correlations that are locally significant at the 95% significance level. The E-OBS, 
FLUXCOM, and ESA-CCI datasets were regridded to the common FLUXCOM grid at 0.5° resolution, 

while the SiTHv2, ERA5, and ERA5-Land datasets were regridded to the ERA5 grid at 0.25° 
resolution. 
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3.3.2 Process representation 

Soil moisture (SM) anomalies play a critical role in sub-seasonal to seasonal forecasting by 
influencing surface energy and moisture exchange over land. But it is important that this 
coupled behaviour is well represented in forecasting systems. In this section we describe a 
number of ways of measuring soil moisture atmosphere coupling that will be used to assess 
model performance. These include correlation-based metrics, windows of opportunity, and 
multi-variate Machine Learning approaches. 

 

3.3.2.1 Gridpoint correlation and co-variability metrics  

Gridpoint correlations between seasonal means provide a measure of the strength of two 
aspects of this coupling on interannual timescales: the terrestrial leg (linking soil moisture and 
evapotranspiration) and the atmospheric leg (linking evapotranspiration and atmospheric 
variables, e.g. temperature, precipitation, cloud cover or circulation parameters). The chain of 
processes involved in land-atmosphere interactions that constitute the atmospheric-leg are 
complex (e.g Santanello et al, 2018). For example, soil moisture influences cloud amount and 
large-scale circulation, but the relationship is complex, and depends on environmental 
conditions, such as static stability (Huang and Margulis, 2011).  Nevertheless, a comparison 
of the relationship between soil moisture and atmospheric variables captures the emergent 
behaviour resulting from these complex interactions and can be used to evaluate models.   

Over Europe there is a large spatial variation in the correlation between evapotranspiration 
and near-surface air temperature: significantly positive over northern Europe and significantly 
negative over southern Europe. In contrast, the soil moisture–evapotranspiration relationship 
exhibits the opposite pattern. These differences reflect distinct regimes—northern Europe is 
energy-limited, where rising temperatures promote evaporation due to sufficient moisture 
availability, while southern Europe is water-limited, where evaporation is suppressed despite 
increasing temperatures due to limited soil moisture. However, the magnitude depends 
strongly on the datasets used to estimate this (see Figure 7). 

A connected pathway from an initial soil moisture anomaly to atmospheric response can be 
identified and measured by looking at correlations between the variables involved in each step 
in the chain.  We test whether dry anomalies at the start of the forecast (e.g. 1st July) are 
preferentially followed by anomalous temperature in month 2 (August). This can occur via the 
persistence of the 1 July soil moisture anomaly to 1 August, leading to low August evaporation 
and high August temperature. As such, this pathway can only occur in moisture-limited 
regions, where low soil moisture is associated with increased sensible heat flux. Although not 
all heatwaves are predictable in this way, dry July soil amplifies the risk of extreme August 
heat, with specific seasonal forecast ensemble members frequently following the pathway 
above in moisture-limited regions.  We thus measure model fidelity by comparing the pathway 
steps in model hindcasts and observed data from GLEAM4 for the land surface (Miralles et al, 
(2025), and ERA5 for air temperature (Hersbach et al, (2020)).  We make detrended area 
mean time series of ensemble seasonal model outputs for a set of 232 global land regions of 
roughly equal area (Stone, 2019) and then produce correlations for successive steps of the 
pathway. With only one 24-year realisation of hindcast-period observations, observed 
correlations are relatively uncertain, therefore we seek to assess the consistency of the model 
and observations given these uncertainties. We subsample the model ensemble, randomly 
picking one member per hindcast year to produce a single model realisation of the hindcast 
period.  This makes 1000 such realisations, producing a distribution of model correlations, and 
we then estimate the percentile of observed correlations within this distribution. For the 
example of Texas (Figure 8), the observed soil moisture persistence and SM-E correlations 
look consistent with the model distribution, but the Evaporation-Temperature correlation 
suggests that the atmospheric leg of the coupling is too strong in the model. Model 
performance is scored as the number of regions where the observed percentile lies within the 
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model distribution for each pathway step.  The new seasonal demonstrators will be assessed 
by comparing their score with the current C3S systems (phase zero demonstrators). 

 

Figure 8: Subsampling tests of the successive links in the land surface pathway, for an example 
region. Panels show observed correlations (black lines) and probability density function of 

subsampled model correlations (for ECMWF-SEAS5) (shaded blue curves) for a) 1 July and 1 August 
soil moisture, b) 1 August soil moisture and mean August evaporation, c) mean August evaporation 

and mean August surface air temperature. The percentile of the observed correlation value within the 
model distribution is shown in each panel heading. 

 

Variations on such metrics have also been investigated, such as the scaled correlation metrics 
defined in Dirmeyer (2011) and Dirmeyer et al. (2014). The first of these measures the strength 
of the terrestrial leg of the coupling (i.e. the link between the root-zone SM and evaporation 
(E):  

𝐼𝑆𝑀−𝐸 = 𝜎(𝐸) × 𝜌(𝑆𝑀, 𝐸) 

In this metric the correlation between SM and E, ρ(SM,E), is scaled by the standard deviation 
of E, σ(E), to highlight regions where both the correlation and the climatological variance is 
high. The metric: 

𝐼𝑆𝑀−𝑋 = 𝜎(𝑋) × 𝜌(𝑆𝑀, 𝐸) × 𝜌(𝐸, 𝑋), 

where X is any atmospheric variable measures the combined strength of the terrestrial leg and 
the atmospheric leg. ISM-E and ISM-X have been applied to current C3S hindcasts (see Figure 9, 
taken from Day et al., 2025), and will be applied to new demonstrators. 
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Figure 9: Application of soil moisture atmosphere coupling metrics to observations (BEST, GPCP) 
and reanalysis (GLEAM, ERA5) (left column) and C3S hindcasts (right column). The terrestrial leg 
metric ISM-E is shown in the top row, but the 2-legged metric for 2m-temperature, precipitation and 

z500 are shown below (figure from Day et al., 2025). 

 

The correlation metrics above have been applied to monthly or seasonal mean data, but 
diagnostics on the sub-daily timescale captured by geostationary satellite data, such as that 
from MSG, have also been developed. The co-variability of observed LST and soil moisture is 
a useful reference to assess how well models represent surface processes. We have 
developed a novel metric, which will be used to compare reanalyses and seasonal forecasts 
with satellite data. It is based on the relationship between monthly SM and the monthly semi-
diurnal amplitudes of LST (LST_Amp), which characterizes the monthly morning heating rate, 
which in turn relates to how efficiently available energy is used for evaporation. The metric is 
then computed as follows: 

● For each month of the year, we compute the rank correlation between monthly surface 
soil moisture (SSM) and LST_Amp per grid-point; 

● We then use the statistical significance of the rank correlation, p-value, to estimate the 
following metric: 
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Ncovar = ∑ s(pm), m= Jan, Feb, …, Dec 

  where s varies linearly between 1 (for p < 1%) and 0 (for p = 10% or higher). 

Ncovar measures the persistence of strong coupling between soil moisture and LST throughout 
the year, keeping in mind that the soil moisture will condition LST amplitudes (i.e., 
evapotranspiration) in water limited evaporative regimes. 

In the example shown below (Figure 10), Ncovar is derived from both ERA5 and satellite 
products. To ensure a fair comparison only cases with ERA5 total cloud cover below 30% are 
considered.  

 

 

Figure 10: Co-variability metric Ncovar between LST and SM, for ERA5 and for satellite observations 
(estimated for the 2004-2023 period). Pixels are shown in grey if all months have a sample size 

smaller than 10. (c): Difference of Ncovar between ERA5 and satellite data. Grey mask in the ΔN map is 
the union of the masks in the two Ncovar maps. The grey contour shows MSG viewing angles of 60º. 

 

3.3.2.2 Spatial Covariances: Maximum Correlation Analysis 

Maximum covariance analysis (MCA) looks for patterns in two space-time datasets which 
explain a maximum fraction of the covariance between them. It allows more spatially complex 
relationships between fields, such as the remote atmospheric response to forcing, to be 
captured, compared to the gridpoint correlation metrics described in 3.3.2.1. By introducing a 
lag between the fields used to perform the analysis it also has the potential to identify 
potentially predictable linkages between two variables.  

In this case, 1m soil moisture, SM1m at time t+𝝉 and Z200 at time t+𝝉 are expanded into K 
orthogonal signals: 

𝑍200(𝑥, 𝑡) = ∑ 𝐔𝑘(𝑥)𝐚𝑘(𝑡)
𝐾

𝑘=1
 

𝑆𝑀1𝑚(𝑥, 𝑡 + 𝜏) = ∑ 𝐕𝑘𝐛𝑘(𝑡 +
𝐾

𝑘=1
𝜏) 

where the covariance between ak(t) and bk(t+𝝉) is the kth singular value of the covariance 
matrix between SM and Z200, decreasing for increasing k (see e.g. von Storch and Zwiers, 
1999). 

 

The patterns related to the leading mode between May soil moisture and JJA geopotential 
height at 200hPa (z200) are shown in Figure 11. It shows a z200 pattern which is similar to 
the so-called Circum-Global-Teleconnection described in Ding and Wang (2005) and indicates 
that it is preceded by dry soil moisture anomalies in the USA and Central Asia, which were 
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identified as regions of strong coupling using the gridpoint correlations. The technique will be 
used to reproducibility of patterns of large-scale variability in the seasonal hindcasts produced 
in CERISE.   

 

 

Figure 11: Patterns related to the leading coupled modes identified by the MCA analysis between 
May 1m soil moisture and JJA z200 field. The mode explains 36% of the combined variance between 

the two fields and the indices corresponding to these patterns have a correlation of 0.88. 

 

3.3.2.3 Explainable AI to quantify driver importance 

Understanding how current seasonal prediction systems model land-atmosphere interactions 
and subsequent temperature extremes is key for skillful seasonal predictions (Rind et al., 
1982, Day et al., 2025). In this respect, a machine learning model is trained to forecast the 
likelihood/occurrence of daily temperature extremes at different locations, employing 
atmospheric and land surface variables as predictors (Figure 12a-b). The central concept is 
constructing the empirical model so that the individual contributions of the land surface and 
atmosphere can be easily traced and analyzed with Shapley Additive exPlanations (SHAP; 
Lundberg et al., 2017) values (Figure 12c). We leverage these different contributions in 
different regional case studies to better understand the roles of atmospheric and land drivers 
for temperature extremes at different locations, and how the different prediction systems 
represent such interactions. The analysis includes examining the atmospheric and land state 
configurations that are more prone to developing temperature extremes in reanalysis and 
prediction systems and detecting missing interactions and case study examples that might 
help explain poor predictability. 

 

 

Figure 12: Scheme exemplifying the methodology. A: target temperature extreme definition and 
locations. B: deep-learning architecture composed of land and atmosphere state processing. C: 

explainability methods (examples in Hannover and Marrakech). 
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In building this tool, we employ the following input variables. The atmospheric circulation state 
is described by daily lags of geopotential height at 500 and 200 hPa (zg500 and zg200) plus 
sea level pressure (psl) anomalies. Lags from the preceding three days are used, while the 
spatial domain covers the Euro-Atlantic region (54W-70E and 14N-71N) at 1ºx1º resolution. 
The land state comprises local soil moisture (swvl) at the first three soil layers for the preceding 
week at the location of interest. For the study of reanalysis data, atmospheric variables from 
ERA5 are used, while ERA5-Land provides land variables. The target variable is the 
occurrence of local daily extreme temperature defined as the daily maximum temperature 
(tmax) exceeding the 90th percentile for the location of interest. To avoid high inter-day 
variability, we apply LOESS (Mahlstein et al., 2015) smoothing to the percentile climatology 
(see Figure 12a). For the study on reanalysis data, tmax from ERA5-Land is used. 

The model architecture employs a Convnext (Liu et al., 2022) model for the atmospheric state 
and a multi-layer perceptron (MLP) to model the contributions from both the land state and the 
joint contribution of the land and atmosphere (Figure 12b). The GradientExplainer is used to 
compute the SHAP values, assessing the contributions from the different variables at different 
locations and case studies during the boreal summer. This data-driven model will be applied 
to evaluate the seasonal prediction systems with regard to the processes (atmospheric 
circulation and land-atmosphere interactions) driving heat extremes. In particular, we will 
assess whether and to what extent the variable importance of the different predictors is 
consistent between seasonal prediction models and observations, and whether the newly 
developed prediction demonstrators show improved representation compared to the current 
model versions. 

 

3.4 Error growth in land-atmosphere coupling 

3.4.1 Rationale 

Biases in key variables, including surface temperature (T2m), temperature at 850 hPa (T850), 
mean sea-level pressure (MSLP), sensible and latent heat fluxes (SHF and LHF), and 
geopotential height (G500), significantly impact the predictive capability of seasonal forecasts 
initiated from November—a crucial period for establishing wintertime atmospheric patterns. 
The CMCC Seasonal Prediction System version 3.5 (SPS3.5) consistently exhibits notable 
negative biases in T2m, T850, and positive biases in MSLP, SHF, and LHF over Siberia. 
These biases indicate fundamental deficiencies in representing critical thermodynamic and 
dynamic processes. By comprehensively analyzing the evolution of these biases, we aim to 
elucidate reinforcing feedback mechanisms that could be targeted to improve model accuracy. 
The instrument developed and the mechanism studied then can be also used to investigate 
potentially similar behaviour in other seasonal prediction model simulations, such as those 
that are being generated in CERISE. 

 

3.4.2 Methodological Framework 

We developed a diagnostic framework centered on bias-spread diagrams (BSD) to 
systematically investigate bias evolution in different models as a starting framework to 
understand the possible key features to be analyzed, and to establish a protocol of 
investigation that could be used to test the improvements in different phases of simulation in 
WP5, entitled ‘Seasonal forecast demonstrators’. 

 

3.4.2.1 Bias-Spread Diagrams (BSD) 
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The Bias-Spread Diagram (BSD) offers a visually succinct summary of models, enabling the 
identification of potential common mechanisms or divergent behaviors, particularly where 
specific variable biases grow anomalously compared to others. These diagrams are 
constructed by plotting two complementary metrics that evolve in time, producing a two-
dimensional trajectory during the six months of the forecast. This allows us to observe how 
model biases develop and diverge throughout the forecast period, providing a powerful 
visualization for detecting emerging patterns and critical periods for model drift that could be 
a focus for improvement. 

● For the x-axis, the spatially averaged bias is computed as the difference between each 
model and ERA5. This involves (i) computing the bias of each ensemble member 
relative to ERA5; (ii) calculating the ensemble mean bias; (iii) computing a spatial 
average over the analysed region; (iv) averaging for each day of the evolution across 
all years; (v) applying a 30-day running mean to isolate processes relevant to land-
atmosphere interactions. 

● For the y-axis, the metric represents the difference between the spatial standard 
deviations of the model and the one for ERA5. Similar to the bias calculation, this 
metric involves ensemble averaging, spatial and yearly averaging, and smoothing with 
a 30-day running mean to highlight variability patterns pertinent to diagnosing model 
behavior. 

See Figure 13 for an example. 

 

 

Figure 13: Bias-Spread Diagrams for key variables (MSLP, T850, T2m, SHF, LHF, G500) comparing 
CMCC SPS3.5, ECMWF SEAS5, DWD21, Meteo France System 8, and UK Met Office versions 600–
602 (merged). Each plot shows the trajectory of the model’s ensemble-mean bias (x-axis) and spatial 
standard deviation of the bias (y-axis) in the NH1 region (Siberia), smoothed with a 30-day running 
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mean. The trajectories span the period from day 15 to day 165 of the 180-day forecast, due to the 
application of the 30-day running mean.  Circular dotted lines represent 25%, 50%, 75%, and 100% of 

the mean ERA5 standard deviation in the region. 

 

3.4.2.2 Identification of Key Diagnostic Time Windows 

From the previous analysis, for the CMCC model, three strategically selected periods were 
identified to systematically investigate different stages of bias evolution: an initial phase (Nov 
20-Dec 10) representing the initial bias development, a transitional phase (Dec 30-Jan 19) 
corresponding to a period when snow cover is well-established over Siberia, and a later phase 
(Feb 8-28) following the onset of snow melt, aimed at analysing subsequent feedback 
reinforcement. 

3.4.2.3 Local thermodynamic and large-scale dynamical mechanisms 

Step 1: Investigate snow depth bias. Starting from the recognition of systematic snow depth 
biases in the CMCC model, we compare the model’s snow depth fields against ERA5 to 
highlight regional anomalies, particularly during the transitional phase when snow cover is 
well-established. 

Step 2: Analyse the relationship between snow and energy fluxes. To understand how snow 
anomalies influence surface-atmosphere energy exchanges, and check for potential model 
deficiency, for example in insulation properties, we compute the surface energy residual (Er): 

𝐸𝑟 =  𝐿𝑛𝑒𝑡 + 𝑆𝑛𝑒𝑡 − 𝐻 − 𝐿𝐻 

This involves evaluating net shortwave (Snet) and longwave (Lnet) radiation and subtracting the 
sensible (H) and latent heat (LH) heat fluxes. By comparing the energy residual in the model 
and ERA5, we assess whether snow biases lead to excessive insulation or energy trapping at 
the surface. 

Step 3: Connect energy residuals to surface temperature biases. We assess the relationship 
between surface energy residual bias and 2-meter temperature (T2m) bias by analyzing their 
spatial co-variability. Specifically, we compute pointwise correlations between the T2m and 
energy residual biases across the domain and across ensemble hindcasts. To highlight 
statistically significant associations, we apply stippling to regions where these correlations 
exceed the 95% confidence level (p < 0.05). This approach reveals how spatial heterogeneity 
in surface energy exchanges is reflected in temperature biases, thereby identifying areas 
where land-atmosphere interactions play a dominant role in driving surface temperature 
errors. 

Step 4: Assess vertical atmospheric structure. To understand possible decoupling between 
the surface and lower atmosphere, we examine vertical temperature profiles. Special attention 
is given to detecting the presence of inversion layers that could limit vertical heat exchange, 
especially during the transitional time window. 

Step 5: Explore dynamical contributions. Finally, we explore the role of atmospheric circulation 
by examining MSLP patterns and associated wind anomalies. This helps determine whether 
dynamical processes, such as reinforced anticyclonic circulation, contribute to maintaining the 
cold bias over time. This also could explain why other regions at the same latitude with similar 
local response, and same parameterization for physical processes do not experience the 
same bias evolution. 
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This integrated diagnostic approach enables us not only to understand the feedback 
mechanisms contributing to bias growth in the CMCC model, but also to evaluate 
improvements in the future model demonstrators. Specifically, the same methodology can be 
applied to new simulations to assess whether: (i) the magnitude and temporal evolution of key 
biases (e.g., T2m, MSLP, T850) are reduced relative to ERA5; (ii) snow depth biases are 
mitigated, leading to smaller energy residual discrepancies and reduced impact on surface 
temperature; (iii) the vertical temperature structure shows improved coupling between surface 
and lower troposphere, limiting spurious inversions; and (iv) the strength and spatial extent of 
bias-induced circulation anomalies, particularly in MSLP, are diminished. These criteria 
provide an objective and transferable basis to quantify progress across model generations. 

 

3.5 Consistency of hindcasts and forecasts 

3.5.2 Significance of differences between hindcast and forecast initial 
conditions 

To avoid large biases in seasonal forecasts of surface climate, it is important to ensure that 
the land surface is initialised consistently between forecasts and hindcasts. This arises as the 
hindcast is used to correct time-dependent biases in the forecast. Substantial temperature 
biases have previously been found to be artificially introduced when forecast and hindcast soil 
moisture initialisation were mismatched. We have built tools to check the consistency of 
initialised soil moisture and snow depth using area-mean time series for the IPCC WG1 
reference regions (Iturbide et al, 2020).  We obtain values for the first day of each member of 
hindcasts and forecasts initialised on the first day of each month. This is done for the full 
hindcast period and a year of forecasts.  Systematic differences between the forecast and 
hindcast values may indicate inconsistency, but it may also be that the chosen forecast year 
happens to be an outlier by chance. To check that the hindcast and forecast initialisation are 
genuinely consistent, we construct synthetic random multiannual time series based on the 
autocorrelation, trend and annual cycle of the hindcast soil moisture and snow depth.  These 
synthetic series cover both hindcast and forecast periods, so we can examine whether the 
initialised forecast data is consistent with a plausible extrapolation of the hindcast initial state.  
The metric for model performance is the number of regions where the initial forecast soil 
moisture or snow depth is significantly different from the synthetic series. This will allow us to 
compare the performance of seasonal hindcasts initialised using land-surface assimilation 
with those in the existing C3S database.   

 

3.5.3 Comparison with operational analysis and offline Land Data Assimilation 

 

Since reanalysis products like ERA5 or ERA5-Land, which are used to initialized seasonal re-
forecasts, can be inconsistent with real-time initialization, some C3S re-forecasts use offline 
land surface reanalysis produced with the same land model version as the operational 
analysis. This is the case at ECMWF, where land surface fields are initialized from an open-
loop land re-analysis. Offline re-analysis using land data assimilation instead of open-loop is 
expected to improve the consistency with the operational analysis. A methodology has been 
developed to determine if the CERISE land data assimilation (LDAS) re-analyses prototypes 
provide greater consistency with operational analysis than ERA5, ERA5-Land and open loop 
offline land re-analysis. This method consists of computing the root mean square error 
difference between the prototype land DA re-analysis (LDAS) and ERA5 (or ERA5LAND) 
using the ECMWF operational analysis as a reference. The formula is: 

𝑓(𝑥) = √∑ (REAN(x,t)−𝑂𝑃𝐸𝑅(𝑥,𝑡))2𝑁

𝑡=1

𝑁
  -   √

∑ (OFFL(x,t)−𝑂𝑃𝐸𝑅(𝑥,𝑡))2𝑁

𝑡=1

𝑁
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where REAN(x,t) is the land surface value (e.g. soil temperature level 1) of the reanalysis 
(ERA5 or ERA5-Land) at a given point (x) and time (t); OPER(x,t) is the corresponding value 
in the operational analysis and OFFL(x,t) is the value in the offline land DA reanalysis.  

Positive values indicate a greater consistency with the operational analysis, and therefore an 
improvement (larger RMSD with ERA5/ERA5-Land than with the offline DA reanalysis) while 
negative values indicate a degradation. As an example, Figure 14 shows that the Volumetric 
soil water level 1 from the ERA6-Land pre-prototype is more consistent with the current 
ECMWF operational analysis than with ERA5 in many regions, although there are a few 
regions (blue color) where ERA5 is more consistent.   

 

 

Figure 14: Impact of the ERA6-Land prototype on top layer soil moisture consistency shown as 
RMSE difference  between ERA5 and ERA6-Land using the ECMWF operational analysis as a 

reference. Red (blue) colours indicate better (worst) consistency with the operational analysis for 
ERA6-Land than for ERA5. 

 

3.6 Assessment of trends in land-surface variables in LDAS, ERA5 and ERA5-
land 

Trends in the land reanalysis used as initial conditions can significantly impact the 
representation of trends in the seasonal forecasts themselves. An error in the representation 
of seasonal trends can lead to significant errors in the model calibration and calculation of 
forecast anomalies. Therefore, it is important to initialize the seasonal forecasting systems 
with an analysis exhibiting realistic trends. The trends in the land surface variables produced 
by ERA6 pre-prototypes are compared with those produced by ERA5 and ERA5-Land using 
the following methodology: for each grid point and each soil variable, a linear regression is 
performed over the full time series (e.g. 1940-2020 for ERA5) to assess the amplitude of the 
trend. The linear regression coefficient is calculated using the formula: 

 

b= 
n( ∑ x∗y𝑛

𝑘=1 )  −  ( ∑ x𝑛
𝑘=1 ) ∗ ( ∑ y𝑛

𝑘=1 ) 

( n∗ ∑ x2𝑛

𝑘=1
)      −  ( ∑ x𝑛

𝑘=1 )2 
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where b is the trend coefficient, y the seasonal mean value of the land surface variable (e.g. 
soil temperature level 1) at a specific grid point and year (k). X(k) represents the kth year from 
1940 to 2020.  

 

A statistical test is then performed by resampling the data using a bootstrap technique where 
20 years are randomly removed from the time series and a linear regression is then performed 
on each of 10,000 new time series. If 99% of the 10,000 new time series display a trend with 
the same sign as the full time series, then the trend is considered to be statistically significant. 
Figure 15 shows an example for volumetric soil water level 1.  Areas where trends are 
significantly different between ERA6-Land pre-prototypes and ERA5 or ERA5-Land are further 
investigated by analysing the time series and identifying possible discontinuities, which are an 
indication of improvements or degradation in the quality of ERA6-Land. This methodology will 
also be applied to diagnose 2-metre temperature trends in seasonal forecast demonstrators 
at various time ranges.  

 

 

Figure 15: Trends in volumetric soil water level 1 in June-July-August computed from ERA5-Land 
over the period 1950-2020. Red (blue) colors indicate a negative (positive) trend. Areas where the 

trend is not statistically significant within the 1% level of confidence have been blanked. 
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4 Conclusion 

During the first 30 months of the CERISE project, a variety of techniques and methodologies 
for evaluating the increased fidelity of land surface processes in reanalyses and seasonal 
forecast ensembles have been developed. These tools are intended to offer a wide-ranging 
capability for evaluating the new reanalysis prototypes and seasonal prediction demonstrators 
being produced in CERISE.  

The range of diagnostic tools developed include methods to detect differences in skill and 
reliability of forecasts of snow cover, indicators for of snow phenomena such as snow onset 
and measures of snow-atmosphere coupling that account for the direction of causality. 
Methods to measure the verification of the spatial distribution of snow cover have also been 
developed. Hydrological simulation using reanalysis or seasonal forecast inputs provides a 
novel test of the fidelity of representation of land surface processes, with new diagnostic 
scores being produced to interpret the results.  

Testing the quality of the representation of soil moisture and linked variables (e.g. 
evapotranspiration) will be essential for the new prototypes and demonstrators. The 
assessment of the available observations that we have conducted shows that observational 
uncertainty will need to be considered if meaningful conclusions are to be drawn from these 
tests. As for snow cover, methodologies for examining soil moisture’s influence on the 
atmosphere have been developed. These examine links between soil moisture anomalies and 
subsequent warm season temperatures and other atmospheric variables. Further, even more 
sophisticated ways of testing soil-atmosphere coupling through satellite-derived diurnal cycle 
amplitudes have been produced, and statistical approaches to assess the non-local effects of 
soil water (through global patterns of atmospheric circulation) implemented. Machine learning 
approaches have also been harnessed to evaluate the relative roles of land surface influences 
compared to e.g. weather patterns in observations, reanalyses and seasonal modelling.  

Methods for assessing the error growth in seasonal demonstrators have been produced. 
Analyses of these errors can reveal the physical causes and effects of errors in the initial land-
surface conditions and in modelling. The test case here has errors in the representation of 
Siberian snow cover. Examination of errors in the new demonstrators will reveal whether they 
are behaving differently from early phases without land surface initialisation. 

Consistency of forecast and hindcast land surface initialisation is key for the production of 
unbiased forecasts, and methods to assess the geographical extent of this consistency in new 
demonstrators have been produced as part of this work. Further to this, comparison methods 
have also been developed to assess whether land-surface initialisation values are closer to 
offline data assimilation than other datasets. Finally, tools to evaluate trends in land-surface 
variables in reanalyses and seasonal ensembles have been created to assess whether trends 
become more accurate in new experimental products.                    

The new toolkit described in this report aims to provide information on the fidelity of processes 
related to the representation of the land surface that supplements information from the 
standard verification (using skill scores) that will be undertaken in WP5. These standard 
methods can struggle to identify improvements, as small changes can require very large data 
samples in order to be statistically unambiguous. By using a range of novel additional 
approaches to assess the quality in the new reanalyses and the seasonal ensembles, we hope 
to improve our chances of gathering evidence of improvements resulting from the assimilation 
of land surface data. Despite this, the approaches we have developed are experimental at this 
stage, and are not guaranteed to be successful in providing clear evidence in every case. 
Nevertheless, our strategy of employing a wide range of variables, datasets and techniques 
in our assessment protocol is designed to maximise the chances of making a clear 
determination on the benefits of the innovations under trial in CERISE. The most relevant tools 
will be identified later in the project with recommendation for potential usage for operational 
assessment of future C3S reanalyses and seasonal prediction systems.    
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