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1 Executive Summary 

This report summarizes the development done in the CERISE project towards unified 
ensemble-based data assimilation framework for regional reanalysis applications. Regional 
reanalysis applications require an adequate treatment of soil and surface variables on a wide 
range temporal and spatial scales. The CERISE project aims to progress on three following 
topics:  

• A homogenization of the analysis of snow and soil variables is one the aims of the CERISE 
project. At present different model variables are analysed using different methods, which 
is leading to the inconsistencies in the analysis and to heavy maintenance burden.  

• A development of flexible ensemble-based data assimilation into the ISBA-Diff soil model 
and the multi-layer snow scheme is the second task of CERISE. Advanced physical 
models together with flexible data assimilation schemes able to handle a variety of 
observations from different platforms will improve quality reanalysis products of near 
surface variables. 

• First steps towards development of a consistent hydrological - meteorological forecasting 
system that is necessary to properly address evolution of water cycle including snow are 
taken in CERISE. 

The work has been carried out in three different teams with the aim of integrating the 
successful outcomes of the development into the common CERISE HARMONIE-AROME 
code release. Ensemble Kalman Filter was chosen as a unified ensemble-based land data 
assimilation framework. The Meteorology Research team at SMHI has been focusing on the 
development of the Ensemble Square-Root Kalman Filter (EnSRKF) data assimilation scheme 
in the inline HARMONIE-AROME environment. An extensive comparison to the Simplified 
Extended Kalman Filter (sEKF) scheme, used as a reference scheme, in the HARMONIE-
AROME CY46 has been performed. The EnSRKF filter propagates the information from the 
screen level variables deeper into the soil and provides the analysis that better agrees with 
observations. At the same time the EnSRKF provides a somewhat too strong response to the 
daily variations caused by the daily cycle. The reason for this behavior and the possible 
remedies are under investigation. The Met Norway team has been focusing on the 
development of the Local Ensemble Transform Kalman Filter (LETKF) scheme, which is a 
variant of EnSRKF.  The scheme has initially been developed for the snow data assimilation 
in the off-line environment and has been extended to the analysis of soil variables. Both 
EnSRKF and LETKF schemes have a similar rescaling engine but differ by way observations 
are handled. The LETKF scheme has an attractive possibility to treat a footprint of the satellite 
instrument in an explicit way. The LETKF scheme is able to significantly improve the estimate 
of snowpack in the areas of flat orography. The LETKF scheme has been evaluated as well 
in the inline environment for analysis of soil variables using screen level observations. The 
preliminary evaluation of the Kalman Gain shows reasonable and intuitively sensible results. 
The Hydrology Research Team at   SMHI has been involved in the development of the 
Ensemble Kalman Filter (EnKF) for snow data assimilation. The focus was here on adequate 
treatment of the snow memory that can be difficult to capture for the timescales of the NWP 
model. The sensitivity of the EnKF to tunable parameters, such as observation error variance 
and horizontal and vertical localisation length scales, have been investigated. Further 
development of the hydrologically constrained localisation for assimilation of upstream 
observations is under implementation. 

The ultimate goal of the investigations carried out within this deliverable “unified ensemble-
based regional land data assimilation system” is to provide a solid foundation for the next 
generation of Copernicus reanalysis in a form of a robust land surface data assimilation. Three 
teams are involved in the developments approach this goal from different perspectives.  The 
EnSRKF development is carried out from the starting point in the efficient functionality of the 
scheme within the in-line Harmonie-AROME environment and investigation of impact of the 
ISBA-diff modelling on fluxes.  The LETKF scheme focuses on the stand-alone environment, 
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such as required for CARRA-Land prototypes, and enabling of use of remote sensing 
observations, including modeling of the footprint-operator. Hydrological modelling will provide 
a framework to validate CERISE snow reanalysis products provided by the EnSRKF or LETKF 
against such accumulated quantities as river discharge observations, and in this way evaluate 
ability of the reanalysis products to capture spatial and temporal scales in an adequate way.  
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2 Introduction 

The aim of this deliverable is homogenisation of the land surface data assimilation 
methodologies for reanalysis. Due to historical reasons different land modelling components 
are being analysed separately that often leads to inconsistent initialization of different land 
variables. Homogenisation of land data assimilation schemes is a necessary step towards 
consistent initialisation of land variables from a variety of available sensors that observe the 
Earth system. An adequate description of the water cycle on a range of temporal and spatial 
scales requires a consistent hydrological meteorological modelling. Although this goal is 
outside the scope of CERISE project, in this deliverable we take the first step in that direction 
and implement data assimilation for meteorological model and for hydrological model in the 
same unified ensemble-based framework. 

 

2.1 Background 

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast 
portfolio, with a focus on land-atmosphere coupling. 

It will support the evolution of C3S, over the project’s 4 year timescale and beyond, by 
improving the C3S climate reanalysis and the seasonal prediction systems and products 
towards enhanced integrity and coherence of the C3S Earth system Essential Climate 
Variables.  

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data 
assimilation approaches and land surface initialisation techniques to pave the way for the next 
generations of the C3S reanalysis and seasonal prediction systems.  

These developments will be combined with innovative work on observation operator 
developments integrating Artificial Intelligence (AI) to ensure optimal data fusion fully 
integrated in coupled assimilation systems. They will drastically enhance the exploitation of 
past, current, and future Earth system observations over land surfaces, including from the 
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions, 
moving towards an all-sky and all-surface approach. For example, land observations can 
simultaneously improve the representation and prediction of land and atmosphere and provide 
additional benefits through the coupling feedback mechanisms. Using an ensemble-based 
approach will improve uncertainty estimates over land and lowest atmospheric levels.  

By improving coupled land-atmosphere assimilation methods, land surface evolution, and 
satellite data exploitation, R&I inputs from CERISE will improve the representation of long-
term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.  

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the 
integration of the developed approaches in the core C3S (operational Service), with the 
delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and 
seasonal prediction demonstrator datasets (demonstrated in relevant environment).  

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the 
components of the seasonal prediction multi-system, directly addressing the evolving user 
needs for improved and more consistent C3S Earth system products. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

This deliverable is a description of the components of the regional data assimilation system 
for the ISBA-diffusion soil model and screen level variables including multi-layer snow scheme 
implemented in the unified data assimilation framework.  
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2.2.2 Work performed in this deliverable 

In this deliverable the work outlined in task 1.3 (Unified Land Data Assimilation development) 
and task 1.2 (Development of ensemble-based land data assimilation approach for soil 
moisture) is summarised. We describe here the methodology for the sequential initialisation 
of snow and soil variables from observations in three different frameworks: land data 
assimilation performed in the HARMONIE-AROME environment, land data assimilation in the 
stand-alone offline environment and the land data assimilation in the hydrological HYPE 
model. Even if the ultimate goal would be a development of the consistent meteorological-
hydrological data assimilation that is necessary to obtain an adequate description of the water 
cycle, this goal is outside the scope of the CERISE project. Our aim here is to create a stable 
prerequisite for integration of the hydrological and meteorological data assimilation together 
at a later stage by implementing the development in a unified land data assimilation 
framework. Different flavors of the Ensemble Kalman Filter are applied for different 
applications. 

 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

2.2.4 Reference Documents 

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement 
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3  Unified Ensemble-based Regional Land Data Assimilation 
system  

In ensemble-based land data assimilation (LDA) the usage of the model is very important for 
at least the fact that the forecast model, in addition to propagating information forward in time, 
it also amplifies the instabilities and perturbations along some directions and damping in other 
directions. The sEKF (simplified Extended Kalman Filter) and EnKF (Ensemble Kalman Filter) 
are two ensemble data assimilation methods investigated in this deliverable. The major 
drawback of the simplified Extended Kalman filter (sEKF) based LDA is the non-linearity 
problem, which makes updating of error covariance matrix, by integrating the linearized 
forward model suboptimal. This difficulty is overcome by using the ensemble Kalman filter 
(EnKF). The EnKF is essentially a Monte-Carlo based approach that relies on generating an 
ensemble of N ensemble members of background (or forecast) states (Evensen 1994). In 
traditional EnKF when random perturbations are added to observations to compute the 
ensemble of background fields spurious correlations arise between the background and 
observation errors. This drawback has initiated the development of different flavors of EnKF 
data assimilation schemes, such as Ensemble square root Kalman filter (EnSRKF). EnSRKF 
does not perturb the observations leading to reduced sampling error in the analysis step; it 
updates the ensemble mean and deviations deterministically. EnSRKF lowers sampling noise 
in the analysis by avoiding the addition of noise to the observations during the update stage. 
The EnSRKF often performs better with smaller ensembles because it lowers random errors 
caused by observation disturbance, improving analysis accuracy. The ground surface 
contains highly nonlinear processes, such as soil moisture and vegetation dynamics, which 
benefit from more precise state estimation. EnSRKF, by lowering noise and increasing 
ensemble representation, frequently delivers more accurate estimates of land surface 
conditions such as soil moisture, temperature, and fluxes.  

3.1  Ensemble-based filter for meteorological application 

The advantage of using Ensemble Kalman Filter (EnKF) based algorithm for land data 
assimilation lies in its ability to effectively handle nonlinear land surface models and complex 
surface dynamics with simpler implementation. Theoretically the sEKF technique struggles 
with the evolution of the forecast error covariance matrix, leading to inaccuracies, whereas the 
EnKF method circumvents these issues by using an ensemble of model states, which avoids 
the direct computation of the error covariance matrix. In EnKF, the forecast error covariance 
is implicitly represented by the spread of the ensemble members, while sEKF method requires 
explicit computation of model Jacobians and update of the B-matrix. The EnKF uses the 
ensemble mean, which better represents the expected state, especially for both Gaussian and 
non-Gaussian distributions. The EnKF introduces uncertainty through stochastic model 
dynamics and physics when integrating each ensemble member, providing a more natural 
representation of uncertainty compared to sEKF’s reliance on fixed error matrices. Thus, EnKF 
typically performs better in practical scenarios due to its flexibility in handling model 
nonlinearities, making it more robust than the sEKF in many real-world applications. 

In numerical weather prediction and data assimilation, using the HARMONIE-AROME model 
we are in the process of developing the land data assimilation system (LDAS) using ‘inline’ 
and ‘offline’ systems to address the different requirements for different applications. The online 
LDAS systems are integrated and run concurrently with full scale atmospheric HARMONIE-
AROME forecast or NWP model, directly assimilating observations to update the model state 
in real-time, constituting the systems coupled through the forecast model propagation. Such 
a system assures continuous exchange of information between atmospheric and land surface 
fluxes. The implementation of such systems requires technical solutions for parallelization that 
are crucial for tasks which are time-sensitive such as operational forecasting. On the other 
hand, offline LDAS systems have the flexibility to operate independently of the real-time heavy 
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atmospheric model forecasts. They can be typically used for retrospective analyses, research, 
and climatological studies, where the focus is on the evaluation of long-term trends, case 
studies, and importantly for the model improvements. For instance, offline assimilation can 
involve extensive ensemble simulations that have the scope for the development of the EnKF 
or advanced machine learning models in a cost-efficient way. By developing and researching 
on separate LDAS systems, we can optimize our resources, balancing the needs of 
operational NWP forecasting with the longer-term goals of model development. 

3.1.1 Ensemble Kalman Filter in the HARMONIE-AROME environment 

 

The initialization of atmospheric NWP models with accurate land surface state coupled with 
land-surface/vegetation models is a key step towards developing a coupled LDA system 
capable of exploiting current conventional SYNOP and future satellite observations. 

The Harmonie-AROME model configuration used for our LDAS study focuses on using multi-
layer surface physics and soil moisture analysis using the ISBA-DIF land surface model 
project. The code base used is from Harmonie-AROME CY46h1, incorporating multi-layer 
physics such as ISBA-DIF for soil processes using a 14-layer soil model. The upper-air data 
assimilation utilizes 3DVAR, while surface analysis includes EnSRKF (Ensemble Square Root 
Kalman Filter) LDA. The results are compared against analysis from sEKF LDA technique 
also. 

• Experiment Details: Cold start on 1st June 2023 with 3-hour cycling for 8 weeks. Local 
settings for upper-air data assimilation are consistent across both LDAS runs. 

• Surface Physics: The model employs ISBA-DIF for detailed 14-layer soil processes, 
including multi-energy balance (MEB) for vegetation effects. 

• Kalman Filter Approaches: (a) EnSRKF for improved surface analysis. (b) sEKF for 
comparison. 

• Observations used and other details: SYNOP, T2m and RH2m observations with defined 
errors (1K and 0.4%, respectively). The ensemble has 16 members, with a control run 
using deterministic forecasts. Control variables include soil temperature, TG1, TG2 (i.e. 
temperature at soil layer 1 and 2) and soil moisture, WG2 to WG5 (i.e. soil moisture 
variables from layers 2 to 5). Data assimilation is conducted every 3 hours. The 
experiments are performed over the “NORD_2.5km” domain, covering the Scandinavian 
peninsula (see Figure 1) . 

• Experiments are also performed with an aim to evaluate the impact on the analysis quality 
of including more soil variables into the control vector. In this separate experiment the size 
of the control vector of soil moisture is increased with two additional variables, including 
soil moisture variables from layers 6 and 7 in addition to the reference configuration WG2 
to WG5 ).  

• Perturbation Methodology of Meteorological Forcing: Perturbations are applied following 
the methods described by Charrois et al. (2016) and Blyverket et al. (2019). Cross-
correlated AR (1) process is used for generating perturbations. The fields perturbed 
include: 

a) Precipitation and shortwave radiation (multiplicative perturbations). 

b) Longwave downward radiation (additive perturbations). 

c) Soil moisture perturbations are also multiplicative, while soil 
temperature perturbations are additive. 
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The soil temperature and soil moisture differences in layer 1 (not shown), closest to the 
surface, are more pronounced. This suggests that meteorological forcing perturbations 
primarily impact the upper soil layers. As we move to deeper layers, the intensity of soil 
temperature and soil moisture differences diminishes. By layer 12 i.e. 5m depth in soil, there 
is little to no noticeable soil temperature and soil moisture difference, indicating that 
meteorological forcing perturbations have limited influence on deeper soil layers. The spatial 
variation of soil temperature and soil moisture differences show heterogeneous patterns . that 
could be due to regional climatic conditions, soil properties, or other factors influencing the 
response. The analysis of soil temperature and soil moisture perturbations shows that 
EnSRKF technique predominantly affects the temperature in upper soil layers, with limited 
impact at greater depths. The use of EnSRKF seems effective in capturing these spatial and 
depth-specific variations in soil temperature differences, which is valuable for improving soil 
temperature and soil moisture predictions in response to meteorological forcing.  

Figure 1 compares the impact of meteorological forcing perturbations on latent heat flux and 
sensible heat flux in the NORD_2.5 km domain, using two different LDAS methods: the sEKF 
and the EnSRKF method. The sEKF and the EnSRKF data assimilation schemes are very 
different in their nature. The sEKF panels (labeled as "(a)" and "(c)") show minimal or negligible 
differences in both latent and sensible heat flux.  This implies that the sEKF method has limited 
sensitivity to the perturbation of meteorological forcing  by its construction when the 
infinitesimal perturbations are imposed on soil variables to numerically estimate Jacobians. 
The EnSRKF panels (labeled as "(b)" and "(d)") display substantial variations in both latent 
and sensible heat flux. This suggests that the EnSRKF technique is substantially more 
sensitive to perturbations of meteorological forcing and captures a broader range of spatial 
variations. The ensemble spread in the EnSRKF is directly related to the uncertainty measure 
in the soil analysis.  The figure thus demonstrates that the EnSRKF method is far more 
sensitive to meteorological forcing perturbations than the sEKF, showing significant 
differences in both latent and sensible heat flux across the region. This makes EnSRKF 
potentially more suitable for capturing fine-scale variations in land-atmosphere energy 
exchanges.
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Figure 1: Perturbation of latent heat flux (W/m2) over the NORD_2.5km domain produced by  (a) sEKF (b) EnSRKF 
scheme,  (c) and (d) same as in (a) and (b) but for sensible heat flux (W/m2) 

 

Figure 2: Vertical profile of (a) soil temperature and (b) soil moisture profile at Sodankylä station, LUO0009 from 
sEKF, EnSRKF based analysis and observations for a typical date of 00 UTC, 29062023.  

Figure 2 presents the vertical profiles of soil temperature analysis (left panel, marked as (a)) 
and soil moisture analysis (right panel, marked as (b)) at the Sodankylä station, Finland with 
comparisons at 00 UTC of 29th June’ 2023 of the EnSRKF (blue) and sEKF (red) and in-situ 
observations (green). 

The temperature profiles show reasonable alignment between the observations (green) and 
the EnSRKF (blue) near the surface, especially in the top 0.2 m of soil. The sEKF (red) based 
profile, however, shows a notable difference, with consistently lower temperatures and higher 
soil moisture within this depth range. As the depth increases (between 0.4m – 0.8m), EnSRKF 
based temperature profile is matched with observations. Meanwhile, the sEKF has a generally 
colder profile and does not align with observations. The EnSRKF based soil temperature 
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profile better captures the overall gradient (the gradual increase of temperature with depth). 
In contrast, sEKF has a higher bias and does not capture the gradient as effectively, especially 
in the upper layers. In the top soil layer (up to 0.2 m), observations (green) show lower soil 
moisture values than both EnSRKF (blue) and sEKF (red). Both the sEKF based and the 
EsSRKF based analyses overestimate the surface soil moisture according to the independent 
observations, whereas the EnSRKF profile shows less pronounced overestimation. . Overall, 
the EnSRKF (blue) shows a closer match to observations than sEKF (red) for both soil 
temperature and moisture, especially near the surface. This suggests that EnSRKF might 
provide a more realistic representation of surface soil processes than sEKF. At the same time 
both EnSRKF and sEKF overestimate soil temperature inversion in the top layer. The reason 
for this is under investigation. One should also take into account that the point comparison 
between modelled and observed values are not straightforward because of the heterogeneity 
of the surface conditions not properly represented in the model. 

The vertical profiles indicate that EnSRKF performs better than sEKF in replicating observed 
soil conditions, particularly near the surface. However, both methods show deviations from 
observations at greater depths, with EnSRKF showing a cold bias in temperature and both.  
models overestimating soil moisture in the upper layers. This indicates that EnSRKF is more 
suitable for near-surface applications, but further refinements of the scheme are needed to 
improve accuracy of the analysis at deeper levels. One should take into account that the 
memory of the soil variables at deeper soil levels is relatively long  and two weeks period used 
for spinning up of structures might be not sufficiently long for the analysis of the soil variables 
at the deep layers. The deepest soil layers are not so sensitive to meteorological conditions 
and thus are not updated during the analysis. 

For the near surface variables dew-point temperature, specific humidity, and 2-meter air 
temperature, the EnSRKF LDAS based forecasts show a noticeable reduction in bias 
compared to the sEKF approach. The standard deviation of the forecasts is also lower for 
EnSRKF LDAS based forecasts, indicating a more accurate prediction. This reduction in bias 
and improved consistency in forecast accuracy is valid from 3 up to 30 hours forecast length. 
This emphasizes the effectiveness of using an ensemble-based approach for LDAS in 
improving forecasts of key near-surface meteorological variables. 

 

 

Figure 3: Vertical profile of soil temperature profile at Sodankylä station, LUO0009 from EnSRKF LDAS 
experiments, ENKF_WG5 (control vector TG1, TG2, WG1 to 5) and ENKF_WG6,7 (control vector TG1, TG2, WG1 
to 7) based analysis and observations for two typical dates (a) 00 UTC, 23062023 (b) 00 UTC, 29062023. 
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Figure 3 shows the results from experiments using EnSRKF based LDAS with two 
configurations, ENKF_WG5 (control vector TG1, TG2, WG2 to 5) and ENKF_WG6,7 (control 
vector TG1, TG2, WG2 to 7) show that the configuration ENKF_WG6,7 which assimilates 
observations up to WG7 soil moisture layer, shows better alignment with observed 
temperatures, especially near soil layers closer to surface. Thus, enlarging the dimensionality 
of LDAS control vector results in a closer match with observed temperature profiles, 
highlighting the importance of including additional deeper soil layers in the data assimilation 
process. The mechanism behind this is under investigation. One possible reason is the larger 
dimensionality of the control vector that allows better capture memory of the nonlinear system.  

Figure 4 shows a comparison of soil temperature analyses produced by the EnSRKF and 
sEKF LDAS against independent observations at 5 soil depth layers at Sodankylä station 
(LUO0009). Each subplot represent time series of soil temperature at specific depths: 5cm, 
10 cm, 20cm, 40 cm and 80 cm.  

 Figure 4: Soil Temperature Analysis provide by the EnSRKF (red) and the SEKF (blue) LDAS against independent 
observations (black)  

 At 5cm depth EnSRKF has slightly more variability and overestimates the temperature at 
some peaks, while sEKF aligns more closely with observations in certain instances. At 10 cm. 
the EnSRKF aligns better with observed peaks while the sEKFis slightly over-smoothed, 
suggesting the strength of the EnSRKF in representing rapid changes in soil temperatures. At 
20 cm depth both the systems show dampened fluctuations compared to shallower depths. In 
general, the EnSRKF system is more effective at capturing temperature dynamics in the 
middle soil layer. In the soil temperature profile at 40 cm depth, both EnSRKF and sEKF 
maintain consistency, with minimal differences between their modeled values. Whereas at 80 
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cm depth the EnSRKF based soil temperature time series is closer to observations reflecting 
stable deep soil temperature dynamics. This analysis time series of soil temperature highlights 
the performance of EnSRKF and sEKF in modeling soil temperature across layers. The sEKF 
based analysis is less efficient in propagating the information from the screen level variables 
to the deeper soil levels (40 cm and 80 cm) and underestimate soil temperature, while the 
EnSKRF analysis is too sensitive to the fluctuations of screen level variables and tend to 
overestimate soil temperature at the deeper levels. Note that the experiment is performed 
during summer period and meteorological conditions contribute to the warming.  

 

Figure 5: Time series of 2-meter air temperature (T2M) from observations, reanalysis systems (CARRA1 and 
CERRA), and analysis/forecasts (3hr forecast) from EnSRKF and sEKF based LDAS, soil temperature (TG2) at 4 
cm depth at Sodankylä station (LUO0018) during January 1999.  

The figure 5 represents a time series comparison of 2-meter temperature analysis and 
observations at Sodankylä station (LUO0018) during January 1999 (winter period). The figure 
highlights the performance of different LDAS modeling approaches in capturing temperature 
variations during a cold spell. T2M observations (black line) represents ground truth data 
recorded at the station. It is used as a reference for comparison. During most of the occasions 
of the significant drop of temperature (January 22,23,24,27) all systems  capture this trend 
well, but with some variations in magnitude and timing. The CARRA1 and CERRA reanalysis 
results are from OI based LDAS and show smoother curves compared to the more variable 
EnSRKF and sEKF based land analysis and forecasts. The soil temperature analysis from 
EnSRKF and sEKF based LDAS shows initial trend closer to observations, especially during 
extreme cold periods reflecting deep inversion up to 230K. Both EnSRKF and sEKF analysis 
(red and orange lines) capture the temperature trends well, reflecting their ability to integrate 
observations effectively. The T2m from EnSRKF (Analysis) shows good agreement with 
observed trends, capturing the main temperature changes and extremes. However, minor 
deviations may indicate limitations in the assimilation process or differences in how surface 
conditions are modeled. The deviation between sEKF and EnSRKF analysis reflects 
differences in how the two systems assimilate data and adjust the model's state. Similarly, the 
3-hour forecasts show slight deviations from their respective analyses but generally maintain 
the same trend, indicating good short-term predictive skill. The comparison suggests that both 
EnSRKF and sEKF systems have strengths in short-term forecasting, but their performance 
varies slightly depending on the assimilation methodology and model configurations. 

We have noticed that the EnSRKF provides a somewhat stronger response to screen level 
observations in particular in connections to the daily cycle than the observations suggest. This 



 

CERISE  
 

  14 

results in too large increments of control variables in the deeper soil layers. More diagnostics 
and investigations are needed to identify the reason for this behavior. Several experiments 
are being conducted with the aim to investigate possible remedies to this behavior both 
through tuning of the filter characteristics such as observation error standard deviation and 
ensemble spread and the reducing/eliminating origin of systematic errors. The evaluation of 
the model simulations against soil moisture observations are in particular challenging because 
of inconsistencies between predicted precipitation patterns and those observed.   

Work is also ongoing in introducing snow control vectors in the multi-layer snow scheme 
initialisation within the inline EnSRKF based LDAS in the HARMONIE-AROME system. 

3.1.2 Local Ensemble Transform Kalman Filter in the stand-alone offline 
environment. 

 

The local ensemble transform Kalman filter (LETKF) is an attractive approach for land data 

assimilation being relatively easy to implement and flexible for choice of observation and 

control variables. It is parallelizable and offers flow dependent background error structures.  

 

At each grid point, the filter equations are solved in ensemble space and the analysis 

increments are a linear combination of the background ensemble perturbations. In this work 

we follow the implementation in (Hunt et al., 2007). 

  

  
where 𝑥 represent the ensemble control vector, 𝑋 the ensemble anomalies, a and b 

superscripts indicate analysis and background respectively, 𝑤 is the transformation weights 

between the background and the analysis, 𝑌𝑏represent the ensemble observation 

equivalent. 𝑃and 𝑅 are the error covariance matrices. 𝜌 and 𝛼 are tunable parameters for 

inflating the background error covariance matrix and to apply localization (inflation of 𝑅), 

respectively. Figure 6 gives an example of the Wa transformation matrix. 

 

 

https://www.zotero.org/google-docs/?dt9yQI
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Figure 6: Example of the Wa transformation matrix with dimensions n times n, where n is the ensemble size. 

 
A prototype of the LETKF is implemented in a python package (https://github.com/CERISE-

Regional-Dem/sfcpert). The package also includes a number of pre and post processing tools 

which are required to perform the soil and snow analysis for the SURFEX surface model. 

However, an effort is made to keep the filter independent and general for possible other 

usages. There is ongoing activity to develop the code for better scalability, and efficient use of 

resources. One of the attractive features of the LETKF scheme is flexibility modelling footprint 

operator for future assimilation of satellite observations into SURFEX model. Experiments 

presented here are conducted using screen level observations.  

 
Localization 

The LETKF indirectly uses the ensemble correlation between state variables in a grid point 

and the observation equivalent to spread information spatially. Having a finite ensemble size 

with limited representation of the true spatial structures, a localization is required to avoid 

sampling noise. For the localization parameter 𝛼, we use an exponential decay function with 

an e-folding length of 50 km. Since e.g. snow depth, temperature and humidity observations 

can have limited representativeness at other altitudes, the vertical distances should also be 

taken into account. In our implementation, the same exponential decay is used for vertical 

localization as horizontal. But then with an e-folding length of 200 meters. LETKF method is 

tested for data assimilation into the multi-layer snow model. 

 
Ensemble generation  

 
Special treatment of the snow pack and bounded variables 

To achieve optimal results for a snow analysis a number of pre and post processing steps are 

implemented. The snow model (ISBA-ES) represents the snow pack state with snow water 

equivalent (swe), density (rho), heat, age, and albedo. For gridpoints with no snow, swe is 

equal to zero, and all other variables undefined. In order to produce an analysis, it is thus 

necessary to initialize the undefined variables to realistic values. A choice was made to use 

the ensemble mean where this exists. Using the ensemble mean value ensures that no 

extreme increments enter the system. In the case where all members have no snow, the filter 

will not be able to produce other analysis than zero. If the latter turns out to be a weakness, 

https://github.com/CERISE-Regional-Dem/sfcpert
https://github.com/CERISE-Regional-Dem/sfcpert
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the ensemble perturbations need to be reconsidered to capture the probability of snow. Or, 

other more pragmatic solutions can be considered.  

 
Most soil and snow variables have a physical bound to their values. After the LETKF is 

performed, all relevant variables are checked against predefined limits. Members that violate 

some limit are flagged, and then replaced by the ensemble mean of the remaining healthy 

members.  

 
Verification experiment 

Assimilation of point observations involves challenges related to representativeness of 

observations which are difficult to distinguish from background error structures. In order to 

minimize this uncertainty, and to have a truth to compare with, synthetic experiments were set 

up. A reference experiment was run using forcing data from a different source to act as a truth 

and to provide synthetic observations to the data assimilation experiment. Point observations 

were simulated by interpolating model values from the reference run to real observation 

locations. These observations were further assimilated into the data assimilation experiment. 

This experimental setup allows for validation in model space and assesses the performance 

away from observation locations.  

 
Table 1: Tested configuration of unified system 

Control Variables Observations Perturbations 

snow state (12 levels) 
- swe  
- rho 
- heat 

soil state 
- water content  

(5 levels) 
- temperature  
- (3 levels) 

 

- synop 2m 
temperature 

- in situ snow 
depth  

- Rain fall 
- Snowfall 
- temperature 
- shortwave radiation 
- longwave radiation 
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Figure 7. Spread - skill relationship for Snow depth in the real observation experiment. Grey line indicates the 

number of observations. 

 

 
Figure 8. Spread - skill relationship for snow depth in the synthetic experiment (From report D1.1) 

 
Figure 9. RMSE difference indicating whether increments improved or degraded the state estimate 

 
In observation space the filter is able to correct snow depth and follow the observations closer 

than the open loop during a full snow season Figure 8 . In general the ensemble encapsulates 

the observations. However, for some stations, rapid changes in observations are not captured 

by the analysis, which could indicate that the forcing perturbations were not large enough. 2 

meter temperature perturbations were added as a measure for this behavior. The relationship 

between model errors (skill) and ensemble spread was also assessed. In the synthetic 

experiment, where representativeness errors can be disregarded, the spread - skill 

relationship was close to unit, and very satisfactory (Figure 8). However, in the real 

observation experiment, the results indicate an under-dispersive ensemble (Figure 7). This is 

likely caused by the representativeness errors of the observations, and also that the forcing 
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data is further away from the real weather than the reference simulation used for the synthetic 

observations.  

 
Spatially, the system is able to improve the state in an area surrounding the observation point 

within the localization length, particularly in inland areas with flat topography (Figure 9). Areas 

where the system fails to improve the state are especially found in regions with mountains and 

valleys. This indicates that the spatial structure of the ensemble perturbations are not 

sufficiently realistic. The issue over mountainous regions can be approached by tuning 

ensemble perturbation and tuning of horizontal and vertical localization length scales.  

 

 

 
 

Figure 10: Snowpack profiles demonstrating improvement in unobserved state variables. Truth (red), open loop 

(blue), analysis (green) 

 
Profiles of the snow pack are also compared at a selection of observation points (Figure 10). 

A majority of these profiles showed analyses closer to the truth than first-guess, however, 

some showed degradations. Since the ensemble perturbations in snow state are results of the 

perturbed forcing, it is critical that the ensemble forcing is close and includes the true weather 

conditions. This is most likely not always the case, given the limited number of ensemble 

members and the assumptions behind perturbation generation. Snow and soil are challenging 

domains due to the long memory of past weather and thus past perturbations. 

 
The synthetic experiments demonstrated that the LETKF is suited for the purpose of land 

surface data assimilation and showed overall satisfactory results to continue with the 

development. Localization parameters were adjusted based on the experiment to limit the 

horizontal impact of each observation. 
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LETKF surface data assimilation in an inline setup 

 

The ensemble-based land surface data assimilation (DA) systems described in this report are 

run offline (no coupling to the atmosphere) to create the land surface ensemble spread (even 

in the inline framework). From WP1 D1.1 we found that for the assimilation of screen level 

variables this offline ensemble introduces spurious correlations that could degrade the land 

surface analysis. In particular we saw that the ensemble correlation between soil moisture 

(layer 1) and 2m specific humidity was negatively correlated, while for a coupled ensemble 

(EPS) this correlation was positive, see Figure 11.  
A consequence of this could be that if the observation-minus-forecast of humidity is larger than 

zero (model too dry), the land DA could remove soil moisture and add it to the atmosphere 

(which is not coupled), potentially drying the surface. At the same time deeper investigations 

need to be performed to understand the reason for this behaviour. The relation between soil 

moisture and T2m and Q2m is complex and is prone to memory/phase delay. As experiments 

done in Section 3.1.1 show the dimensionality of the control vector has an impact on the ability 

of the Ensemble Kalman Filter to capture memory of the nonlinear system. 

 
Figure 11: Ensemble correlation between soil moisture (layer 1) and 2m specific humidity for different soil wetness 

index (SWI). For the  coupled ensemble system (EPS bdPert in blue ) and offline perturbed forcing experiment 

(Forcing pert in orange).  

 

Focusing on coupled land-atmosphere DA, it is also relevant to investigate how the coupled 

ensemble represents the covariance between variables, both in the land surface and between 

surface and upper-air variables. In this section we report preliminary results on assimilating 

screen level variables with an offline vs an inline ensemble.  

 
Experiment setup and results 

 

For the surface analysis part we use the LETKF scheme. It is slightly adopted to read and 

write FA format files which is the internal file format in HARMONIE-AROME. Other than that 

no specific modifications were done to the scheme.  
We set up two different experiments, i) with a 7 member inline EPS (driven by different 

ECMWF boundary conditions) and cycling of the surface, ii) 16 member offline surface 
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ensemble, cycling of surface and with perturbation of soil temperature and moisture. The 

experiments are run from the 1st July 2023 to the 3rd July 2023. 

 
Figure 12 shows the ensemble spread in soil temperature for layer 2 for inline vs offline 

ensemble, respectively. From the figure 11 we can see that the spread in the inline ensemble 

increases throughout the period. While for the offline the spread is relatively flat throughout 

the period. In Figure 12 we plot the same time-series but for soil moisture layer 2. Here we 

see that there are larger differences between the two ensemble methods, in particular when 

it comes to timing of the precipitation events.  

 
Figure 12: (Top) soil temperature (layer 2) spread inline ensemble, (bottom) same but for offline ensemble.  

Experiment period is 1st July 2023 06UTC to 3rd July 2023 06 UTC 
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Figure 13: (Top) soil moisture (layer 2) spread inline ensemble, (bottom) same but for offline ensemble. Experiment 

period the 1st July 2023 06 UTC to the 3rd July 2023 06 UTC 

 

The resulting spread in the screen level variables are shown in Figure 12 and Figure 13. It is 

clear that the offline ensemble is under-dispersive and that the coupled ensemble spread is 

larger and encapsulates the observed value. 

 
Figure 14: (Top) 2m temperature spread inline ensemble, (bottom) same but for offline ensemble. Observed value 

given by black dot. Experiment period 1st July 2023 06 UTC to the 3rd July 2023 06 UTC 
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Figure 15: (Top) 2m relative humidity spread inline ensemble, (bottom) same but for offline ensemble. Observed 

value given by black dot. Experiment period the 1st July 2023 06 UTC to the 3rd July 2023 06 UTC 

 

We performed single observation experiments to evaluate how the coupled ensemble would 

affect the land surface analysis. The EPS ensemble was then used as the first guess to the 

LETKF and we assimilated 2m temperature and relative humidity. The control vector was soil 

temperature layer 1-2 (TG1 and TG2) and soil moisture layer 2-5 (WG2-WG5). The 

observation-minus-forecast difference was 0.65 K and -0.03 for temperature and humidity, 

respectively. 

 
Figure 16 shows the soil temperature and moisture increments for different layers. The soil 

temperature increment is quite straightforward, positive Observation-minus-first-guess (OmF) 

difference and positive increment which decays into the soil. For soil moisture the increments 

are more complex and layer 3 seems to have larger increments than layer 2 for some regions. 

This is most likely related to the rooting depth and hence which layer is active in the 

transpiration. The soil moisture increments are quite large along the coast.  
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Figure 16: (Top) Soil temperature increments layer 1 and 2, (bottom) soil moisture increments layer 2 and 3.  

 

This might be a spurious increment and would need to be investigated in more detail later.  

 
To further evaluate the sanity of the ensemble covariance structure. We compute the Kalman 

gain:  

 
K = Cxy/(Cyy + Cvv) 

 
Here Cxy is the sample cross-covariance between the ensemble of prior model states and the 

predicted measurements, Cyy is the sample covariance of the predicted measurements 
and Cvv is the measurement error variance. The latter is set to 1K2 and 0.16 for 2m 

temperature and 2m humidity, respectively. In Figure 17 we show the Kalman gain for soil 

moisture and 2m temperature (left) and soil moisture and 2m humidity (right).  
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Figure 17: (Left) Kalman gain for soil moisture and 2m temperature, (right)) same but for soil moisture and 2m 

humidity.  

 

For temperature a gain of K = -0.02 (m3/m3)/K, equates to a decrease of 0.02 (m3/m3) in the 

updated (posterior) layer 2 soil moisture for a difference of 1 K in the modeled vs observed 

2m temperature. This seems reasonable to remove soil moisture to increase the sensible heat 

flux (and 2m temperature) and vice versa. For humidity we see both more of positive and 

negative gain, but the most dominant is the positive gain. For humidity a gain of K = 0.02 

(m3/m3)/percent, equates to an increase of soil moisture for a positive difference in the 

observed vs modeled humidity. This also seems reasonable as a positive OmF difference 

means that the model is too dry and we add soil moisture available for evaporation.  

3.1.3 Autoencoder based data assimilation in a test environment  

One of the challenges in ensemble data assimilation is to generate realistic and diverse model 
state perturbations that capture the uncertainty in the initial conditions. Multivariate 
consistency of model state perturbations is another topic that was investigated in the study. 
The ultimate goal of this study is to propose a system that would be generic enough to handle 
a variety of situations in an unified environment. As it was already mentioned in section 3.1.1 
and section 3.1.2 the dimensionality of the control vector impacts the ability of the DA system 
to handle memory. This means that the perturbations should respect the physical and 
dynamical relationships among different variables in the model state and this is situation-
dependent. Sampling in the Latent Space using a Variational Auto-encoder (VAE) is one of 
the approaches that we have been investigating for this purpose. A VAE is a type of neural 
network that can learn a low-dimensional representation of high-dimensional data, such as 
images, texts, or model states. It consists of two parts: an encoder and a decoder. An encoder 
allows to encode a large dimensional physical space into a well-behaving smaller-dimensional 
latent space where sampling can be performed in an easy way. The decoder allows to project 
large size ensembles in an efficient way back to a physical space. In our study, we applied the 
VAE framework to ten years of data from a single column (located in Sodankylä in northern 
Finland) of the surface model SURFEX. Here SURFEX was run with a 14 layer diffusion 
scheme for the soil (ISBA-dif) and a 12 layer representation of the snowpack (Explicit snow) 
over two surface patches (high and low vegetation). In total the model state then contains 
about 200 variables.  

Using principal component analysis, approximately 99 % of the variance could be explained 
using 32 variables. A vanilla VAE was shown to do the same with a latent space of only 10 
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variables. However, the time evolution of the reconstructed data becomes notably smoothed. 
This is a known problem with standard VAE and future work will be directed towards combating 
this, either by employing the Wasserstein distance or by using a deterministic auto-encoder 
(less prone to smoothing) followed by a step with diffusion or normalizing flow to guarantee 
compactness of the representation. One of the aims of this study was to obtain latent space 
that could capture both soil and snow processes. Up to now the results are not satisfactory. 
The reason is that when snow is present the snowpack heavily isolates the soil, and the 
correlations between screen level observations and the soil variables are negligible in 
presence of snow. Present solution is to use two different models for updating soil variables 
when there is no snow and for updating snow variables.  

 

3.2    Ensemble Kalman Filter for hydrological model HYPE 

In this section we present development of the Ensemble Kalman filter for the hydrological 
applications. The ultimate goal is the development of the consistent meteorological-
hydrological data assimilation necessary to properly capture the water cycle evolution 
including snow. The Hydrological Predictions for the Environment (HYPE) model is a semi-
distributed catchment-based hydrological model, developed and used for research and 
operational forecasting/analyses by SMHI hydrology group (Lindström et al. 2010). A module 
for data assimilation using the Ensemble Kalman Filter (Evensen 2009) has been previously 
implemented in the HYPE model as described in (Musuuza et al. 2020; Musuuza et al. 2023). 
The current EnKF implementation in the HYPE model is characterized by: 

• ensemble generation is obtained by random perturbation on the meteorological forcing 
data (precipitation, air temperature, wind speed/direction) assuming normally distributed 
errors with either relative or absolute standard deviations. The perturbations can further 
be generated with temporal memory and with spatial correlation for individual variables, 
but without covariance between variables. 

• observation ensembles are generated without spatial correlation, but otherwise with the 
same error model assumptions as for the forcing data. 

• localization is obtained using horizontal and vertical distance-based covariance 
localization. 

• the EnKF analysis is performed globally using all available observations and all spatial 
compartments in the model domain which limits the application to smaller model domains 
due to numerical demands. 

The objective of this task is to further improve the EnKF implementation in the HYPE model 
through the following steps: 

• implementation of a local EnKF to enable applications with larger model domains (inspired 
by LETKF developments for meteorological application) 

• development and implementation of an improved hydrologically constrained localization 
method for assimilation of instream observations such as river discharge and river water 
level 

• diagnose the sensitivity of EnKF scheme to a range of tunable parameters, tune the EnKF 
scheme on optimal performance and get better insight into the properties of Ensemble 
Kalman Filtering.  

A challenge for hydrological data assimilation using the EnKF method is to properly take into 
account the spatio-temporal relations between different types of model states and 
observations. This is particularly the case for the assimilation of river discharge or river water 
level observations, which represent the integrated effect of hydrological processes in the 
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upstream area of the observation locations that may span various periods back in time 
depending on the basin size and memory characteristics. Based on (El Gharamti et al. 2021) 
we will implement and evaluate the impact of an along-stream localization method taking into 
account the relative positions of the observations and the model states along the river network 
rather than the horizontal and vertical distance used in the current localization method. In 
addition to (El Gharamti et al. 2021) we will include the relative control of the upstream area 
of a model state versus an instream observation, as well as the travel time along the stream 
from the location of an upstream model state to the location of the observation. Furthermore, 
we will investigate the potential of the empirically based localization method presented by 
(Revel et al. 2019) to further improve the assimilation of river discharge and water level 
observations. 

3.2.1 Study areas 

The first study area used is the Lake Överuman catchment, a small mountain catchment in 
Northern Sweden used for hydropower (Clemenzi et al. 2023). In this area, observations of 
snow depth and snow water equivalent are available with high spatial resolution along so-
called snow survey transects, in addition to the lake (reservoir) inflow. Figure 18 shows the 
reservoir and the inflow region together with buffer area.  

 

Figure 18: The study area used in the experiment marked as dark squares. The reservoir (dark blue) is shown with 
its inflow region (light blue) and the 6 km buffer (dashed line) around it. The green and red squares are the sub 
basin sampled from the bands below and above the tree line, respectively. 

A second study area has been created by setting up the HYPE model on a 0.05-degree grid 
covering a larger part of northern Sweden. For this study area, see Figure 19, we will use river 
discharge and snow depth observations from the SMHI station observation networks, and 
fractional snow cover from the ESA CCI project. 
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Figure 19: Northern Sweden showing the gridded HYPE model domain (in gray) at the spatial resolution of 
0.05x0.05 degree and overlaying the local topography. The points in cyan are the 98 SMHI stations with daily snow 
depth observations. The figure extract represents the land cover provided by the ESA CCI project. 

 

3.2.2 EnKF sensitivity to localization and error model parameters when 
assimilating point snow data. 

A number of parameters control the performance of the Ensemble Kalman Filter (EnKF) 
although they are usually chosen either arbitrarily or based on expert knowledge. The main 
parameters in our implementation of the filter are the permitted errors and the localizations in 
the horizontal and vertical directions. Localizations control the distance over which an 
observation is permitted to have a positive covariance that diminishes to zero beyond that 
distance. There are also perturbation parameters in the forcing data, but those were not 
changed in these experiments. We used the inflow region of the Överuman reservoir in 
northern Sweden for which there are recorded estimates of the local runoff that flows into it. 
The spatial extent was extended to 6 km around the inflow region (see Figure 18). We divided 
the domain into two bands below and above the tree-line, which was set at 700 m above sea 
level. 

The experiment in its entirety aims at using the modeled reservoir inflow as the target variable 
to investigate the impact of the three parameters named above on the assimilation of the 
reservoir inflow, snow water equivalent and the snow depth; as well as the impact of the 
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distance over which the assimilated observations impact the EnKF performance. We limit the 
presentation here to the parts of the investigations pertaining to the EnKF parameters. The 
model performance is assessed with the KGE metric, which gives further insights into the 
timing, bias and variability of the modeled each of the three EnKF parameters under 
investigation (top) when SWE above the tree-line is assimilated. The bottom are the KGE for 
the individual years from the investigated parameters when SWE below and above the tree-
line is assimilated. 

 

 

Figure 20: The KGE with each of the three EnKF parameters under investigation (top) when SWE above the tree-
line is assimilated. The bottom are the KGE for the individual years from the investigated parameters when SWE 
below and above the tree-line is assimilated. 

 

Figure 20 (top) shows the dependence of the KGE metric on the three EnKF-parameters 
during 2020 and the assimilation of the SWE above the tree line. The model performance 
reduces with increasing errors as would be expected. The performance increases with the 
localizations in both directions and tends to maxima at the upper limits. The turning points are 
not well defined, which reveals the need to increase the upper limits of parameters. 

The bottom part of the figure shows the performance for the years in the simulation period for 
the assimilation of SWE below and above the tree line. There is significant inter-annual 
variability in the performance with the different EnKF-parameters and the spread caused by 
the errors (first 2 boxes) is lower than that caused by localizations (last 4 boxes). There are 
generally similar performances from the parameters for assimilations below and above the 
tree line except during 2020 and 2021 when the assimilation below the tree line resulted in 
higher performance than its counterpart. The results for 2022 (not shown with the displayed 
scale) were significantly lower than the rest and did not show the expected trends. This is 
possibly due to the short record length.  
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Figure 21: The aggregated snow water equivalent over the SE-northern model domain for the periods Oct 2016 to 
Dec 2021. The green and dark black lines indicate the median and mean, respectively. 

Figure 21 shows the aggregated snow water equivalent from all the stations in the SE-northern 
model. Although the maximum values vary significantly over the years, the means are 
comparable. However, 2018 and 2020 had less than 250 mm of average snow, which was 
lower than the other years. The same years had low performance in the boxplots shown in 
Figure 20. The Överuman for which the boxplots were produced is significantly smaller than 
the SE-northern domain and is at a higher elevation but the latter model should give a more 
representative average snow amount that is free from localized effects of e.g., wind. We can 
therefore attribute the low model performance to the low amounts of snow during those years. 
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4  Conclusion 

This report summarizes the development done in the CERISE project towards unified 
ensemble-based data assimilation framework for regional reanalysis applications. Regional 
reanalysis applications require an adequate treatment of soil and surface variables on a wide 
range temporal and spatial scales. The CERISE project aims to progress on three following 
topics.  

 

• A homogenization of the analysis of snow and soil variables is one the aims of the CERISE 
project. At present different model variables are analysed using different methods, which 
is leading to the inconsistencies in the analysis and to heavy maintenance burden.  

• A development of flexible ensemble-based data assimilation into the ISBA-Diff soil model 
and the multi-layer snow scheme is the second task of CERISE. Advanced physical 
models together with flexible data assimilation schemes able to handle a variety of 
observations from different platforms will improve quality reanalysis products of near 
surface variables. 

• First steps are taken towards development of a consistent hydrological - meteorological 
forecasting system that is necessary to properly address evolution of water cycle including 
snow are taken in CERISE. : a) to this point, developments and assessment of snow data 
assimilation has been done separately in meteorological and hydrological forecasting 
systems but with converging methodologies to support the final implementation for the 
CERISE re-analysis, b) development of roadmap for implementation of a river network 
constrained localization to enable assimilation of streamflow observations.    
 

An extensive comparison has been done between sEKF and EnSRKF DA scheme for inline 
DA assimilation of screen level 2Tm and 2RHm into ISBA-DIFF model. EnSRKF propagates 
increments from the screen level variables deeper into the soil. Validation has been performed 
over supersites against independent observations. Validation results show that analysis using 
the EnSRKF scheme results in a better agreement with observations than the analysis done 
using sEKF scheme including the temperature inversion. Enlarging the dimensionality of the 
control vector brings analysis closer to observations. One of the reasons is that the larger 
dimensionality of the control vector allows better representation of memory of the nonlinear 
system. In general, we have noticed that EnSRKF provides a somewhat stronger response to 
the daily cycle variations for deeper soil levels than the observations suggest. The reason for 
this behaviour is under investigation. One possible reason is an existence of systematic model 
errors in modelling moisture processes in HARMONIE-AROME. At the same time validation 
of soil variables is very challenging because soil observations are very rare. Also, validation 
of soil moisture analysis is more problematic than the soil temperature analysis because of 
heterogeneity soil types and sensitivity to predicted precipitation patterns that might differ from 
those that have occurred in reality. 

Assimilation of remote sensing products and radiances to improve soil analysis is one of the 
motivations for the CERISE project. LETKF scheme has been developed to be used in the off-
line Land DA. Attractive features of the LETKF is high scalability and the inherent ability to 
treat the footprint of the observation operator. The LETKF scheme has been extensively tested 
for DA in the offline multi-layer snow model and has been tried as an in-line DA scheme for 
screen level observations for the soil moisture analysis. Because of limited ensemble size, 
both vertical and horizontal localisation is introduced in order to hamper spurious correlation. 
LETKF is able to significantly improve snowpack in the areas of flat orography. Performance 
is less satisfactory in the mountainous areas where modelling of snowpack is very challenging. 
The spread of the LETKF ensemble, and the amplitude of the Kalman gain, is driven a lot by 
spread in forcing conditions. It was noticed that the spread of the LETKF scheme is 
substantially different in the online and offline experiments. This is partially due to different 
methodologies used for generation of perturbations. As it is expected the offline LETKF 
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scheme struggles to capture weather dependency. The diagnosis of the sanity of the Kalman 
gain was performed in the inline experiments and preliminary results show reasonable and 
intuitively sensible results. Evaluation is on-going. 

The VAE framework has been tried to derive a system that is generic enough to handle a 
variety of situations in a unified framework. This particularly concerns the dimensionality of the 
control vector that currently is chosen based on affordability constraints. So far results are not 
satisfactory because VAE results in notably over smoothed time evolutions. Different remedies 
are considered to improve that behaviour. Also, the usefulness of the truly unified system is 
doubtful. The snowpack is heavily isolating the soil from the screen level observations. A 
practical solution is to derive two different systems, one is to perform analysis of soil variables 
when there is no snow and another to perform analysis of snow variables when snow is 
present. 

The ensemble Kalman filter has been implemented and refined for the snow data assimilation 
in hydrological model HYPE. The focus was on exploring the features of the Ensemble Kalman 
Filtering and tuning it to the optimal performance. The sensitivity to the observation error 
variance and the vertical and horizontal localisation scales was evaluated. The target is the 
modelled river discharge that provides a measure of accumulated snow mass. The surprising 
discovery was that the performance of the EnKF is increasing with increasing the length scales 
of the localisation. The reason for this is under investigation. The work is going on with 
implementation of the hydrologically constrained localisation to handle upstream observations.   
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